Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
J Obstet Gynaecol ; 44(1): 2360547, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38904638

ABSTRACT

BACKGROUND: MiR-381 can regulate the expression of cyclin A2 (CCNA2) to inhibit the proliferation and migration of bladder cancer cells, but whether miR-381 has the same function in breast cancer is not well know. METHODS: The over express or silence miR-381 expressing cell lines were constructed by lentivirus infection to reveal the biological functions of miR-381 in vitro. The expression of miR-381 and CCNA2 in 162 breast cancer patients were detected to further reveal their impact and predictive value on progression-free survival (PFS) and overall survival (OS). RESULTS: After transfection of MDA-MB-231 and MCF-7 cells with miR-381 mimics, the expression of miR-381 was effectively up-regulated and CCNA2 was effectively down-regulated, while the opposite results were observed in tumour cell which transfected with miR-381 inhibitors. After transfection of cell lines with miR-381 mimics, tumour cell activity was significantly reduced, while the opposite results were observed in tumour cell which transfected with miR-381 inhibitors. The area under curves (AUCs) of miRNA-381 and CCNA2 for predicting PFS and OS were 0.711, 0.695, 0.694 and 0.675 respectively. Cox regression analysis showed that miRNA-381 ≥ 1.65 2-ΔΔCt and CCNA ≥ 2.95 2-ΔΔCt were the influence factors of PFS and OS, the hazard ratio (HR) values were 0.553, 2.075, 0.462 and 2.089, respectively. CONCLUSION: miR-381 inhibitors breast cancer cells proliferation and migration by down-regulating the expression of CCNA2, both of them can predict the prognosis of breast cancer.


miR-381 can regulate the expression of cyclin A2 and inhibit the proliferation and migration of bladder cancer cells, but whether miR-381 has the same function in breast cancer is not well know. We analysed the levels of miR-381 and cyclin A2 in breast cancer patients and breast cancer cells to reveal the mechanism of miR-381 affecting the expression of cyclin A2. We found miRNA-381 affects the proliferation and migration of breast cancer cells by down-regulating the expression of cyclin A2. The expression of serum miR-381 and cyclin A2 have important values in predicting the prognosis of breast cancer. Our findings provide mechanistic insights into how miR-381 regulates the proliferation and migration of breast cancer, as well as a new target for clinical treatment. Future research may focus on how to improve patient prognosis by up-regulating expression of miR-381 and down-regulating the expression of cyclin A2.


Subject(s)
Breast Neoplasms , Cell Proliferation , Cyclin A2 , Gene Expression Regulation, Neoplastic , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Cell Proliferation/genetics , Cyclin A2/genetics , Cyclin A2/metabolism , Prognosis , Middle Aged , Cell Line, Tumor , MCF-7 Cells , Adult
2.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1809-1817, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812193

ABSTRACT

The content of 15 total amino acids(TAAs) in Bambusae Concretio Silicea was determined by HPLC with phenyl-isothiocyanate(PITC) for pre-column derivatization. The results showed that the content of TAA was 0.61-12.25 mg·g~(-1), and aspartic acid(Asp), glutamic acid(Glu), proline(Pro), glycine(Gly), and valine(Val) were the top five amino acids in terms of the average content. The content of essential amino acids(EAAs), conditionally essential amino acids(CEAAs), non-essential amino acids(NEAAs), and medicinal amino acids(MAAs) was 0.24-4.75, 0.30-4.73, 0.40-7.50, and 0.36-6.51 mg·g~(-1), respectively. Among the delicious amino acids, sweet amino acids(SAA), bitter amino acids(BAA), fresh-taste amino acids(FAAs), and odourless amino acids(OAAs) had the content of 0.22-4.70, 0.19-4.03, 0.13-2.26, and 0.06-1.26 mg·g~(-1), respectively. The 21 batches of Bambusae Concretio Silicea samples presented the same composition but significant differences in the content of amino acids. Among the three producing areas, Guangdong was the area where the samples had the highest content of TAAs, EAAs, CEAAs, NEAAs, MAAs, and delicious amino acids. Furthermore, the ratio of amino acid(RAA), ratio coefficient of amino acid(RCAA), and score of ratio coefficient of amino acid(SRCAA) were calculated to evaluate the nutritional value of Bambusae Concretio Silicea. The results showed that the Bambusae Concretio Silicea samples from Guangdong had better nutritional value. The nutritional value evaluation based on the content of 15 amino acids was proposed to provide data support for the quality grading of Bambusae Concretio Silicea and lay a foundation for the development and utilization of the medicinal material resources.


Subject(s)
Amino Acids , Nutritive Value , Amino Acids/analysis , Chromatography, High Pressure Liquid
3.
Phys Chem Chem Phys ; 26(15): 11738-11745, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563831

ABSTRACT

High-performance sodium-ion batteries (SIBs) require anode materials with high capacity and fast kinetics. Based on first-principles calculations, we propose BC3N2 and BC3N2/graphene (B/G) heterostructure as potential SIB anode materials. The BC3N2 monolayer exhibits intrinsic metallic behavior. In addition, BC3N2 possesses a low Na+ diffusion barrier (0.15 eV), a high storage capacity (777 mA h g-1), a low open-circuit voltage (0.72 V), and a tiny axial expansion (0.36%). Compared with the BC3N2 monolayer, the B/G heterostructure exhibits a lower diffusion barrier of 0.027 eV, suggesting a much faster diffusion. More importantly, although the B/G heterostructure possesses heavier molar weight, its theoretical capacity (689 mA h g-1) is comparable to that of the BC3N2 monolayer. Based on the above-mentioned properties, we hope both the BC3N2 monolayer and the B/G heterostructure would be promising anodes for SIBs.

4.
Phys Chem Chem Phys ; 26(17): 13395-13404, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647031

ABSTRACT

Carbonaceous materials are promising candidates as anode materials for non-lithium-ion batteries (NLIBs) due to their appealing properties such as good electrical conductivity, low cost, and high safety. However, graphene, a classic two-dimensional (2D) carbon material, is chemically inert to most metal atoms, hindering its application as an electrode material for metal-ion batteries. Inspired by the unique geometry of a four-penta unit, we explore a metallic 2D carbon allotrope C5-10-16 composed of 5-10-16 carbon rings. The C5-10-16 monolayer is free from any imaginary frequencies in the whole Brillouin zone. Due to the introduction of a non-sp2 hybridization state into C5-10-16, the extended conjugation of π-electrons is disrupted, leading to the enhanced surface activity toward metal ions. We investigate the performance of C5-10-16 as the anode for sodium/potassium-ion batteries by using first-principles calculations. The C5-10-16 sheet has high theoretical specific capacities of Na (850.84 mA h g-1) and K (743.87 mA h g-1). Besides, C5-10-16 exhibits a moderate migration barrier of 0.63 (0.32) eV for Na (K), ensuring rapid charging/discharging processes. The average open-circuit voltages of Na and K are 0.33 and 0.62 V, respectively, which are within the voltage acceptance range of anode materials. The fully sodiated (potassiated) C5-10-16 shows tiny lattice expansions of 1.4% (1.3%), suggesting the good reversibility. Moreover, bilayer C5-10-16 significantly affects both the adsorption strength and the mobility of Na or K. All these results show that C5-10-16 could be used as a promising anode material for NLIBs.

5.
Br J Pharmacol ; 181(16): 2774-2793, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38644540

ABSTRACT

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.


Subject(s)
Adipose Tissue, White , Arthritis, Experimental , Arthritis, Rheumatoid , PPAR gamma , Animals , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Humans , Rats , Arthritis, Experimental/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Male , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/drug therapy , PPAR gamma/metabolism , PPAR gamma/agonists , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Female , Rats, Inbred Lew , Adipocytes/metabolism , Adipocytes/drug effects , Adipokines/metabolism
6.
J Phys Chem Lett ; 15(9): 2485-2492, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38408427

ABSTRACT

We propose a two-dimensional carbon allotrope (named KT-graphene) by incorporating kagome and tetragonal lattices consisting of trigonal, quadrilateral, octagonal, and dodecagonal rings. The introduction of non-hexagonal rings can give rise to the localized electronic states that improve the chemical reactivity toward potassium, making KT-graphene a high-performance anode material for potassium-ion batteries. It shows a high theoretical capacity (892 mAh g-1), a low diffusion barrier (0.33 eV), and a low average open-circuit voltage (0.51 V). The presence of electrolyte solvents is propitious to boost the K-ion adsorption and diffusion capabilities. Moreover, one-dimensional nanotubes (KT-CNTs), rolled up by the KT-graphene sheet, are metallic regardless of the tube diameter. As the curvature increases, KT-CNTs exhibit significantly increased surface activity, which can promote the electron-donating ability of K. Furthermore, the curvature effect greatly enhances the efficiency of K diffusion on the inner surface compared to that on the outer surface.

7.
Phys Chem Chem Phys ; 26(5): 4589-4596, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38250962

ABSTRACT

Multivalent-ion batteries have garnered significant attention due to their high energy density, low cost, and superior safety. Calcium-ion batteries (CIBs) are regarded as the next-generation energy storage systems for their abundant natural resources and bivalent characteristics. However, the absence of high-performance anode materials poses a significant obstacle to the progress of battery technology. Two-dimensional (2D) Dirac materials have excellent conductivity and abundant active sites, rendering them promising candidates as anode materials. A novel 2D Dirac material known as "graphene+" has been theoretically reported, exhibiting prominent properties including good stability, exceptional ductility, and remarkable electronic conductivity. By using first-principles calculations, we systematically investigate the performance of graphene+ as an anode material for CIBs. Graphene+ exhibits an ultra-high theoretical capacity (1487.7 mA h g-1), a small diffusion barrier (0.21 eV), and a low average open-circuit voltage (0.51 V). Furthermore, we investigate the impact of the electrolyte solvation on the performance of Ca-ion adsorption and migration. Upon contact with electrolyte solvents, graphene+ exhibits strong adsorption strength and rapid migration of Ca-ions on its surface. These results demonstrate the promising potential of graphene+ as a high-performance anode material for CIBs.

8.
Phys Chem Chem Phys ; 25(42): 29224-29232, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37873573

ABSTRACT

Lithium-ion batteries (LIBs) remain irreplaceable for clean energy storage applications. The intrinsic metallic nature of penta-SiCN ensures its promising application in the electrodes of LIBs. Using first-principles calculations, we evaluate the performance of the intrinsic metallic penta-SiCN monolayer as the anode material for LIBs. Penta-SiCN exhibits a low diffusion energy barrier (0.107 eV) for Li atom migration on Si18C18N18, while the diffusion energy barrier for vacancy migration on Li17Si18C18N18 is only 0.006 eV. Additionally, penta-SiCN possesses a high theoretical capacity of 1485.98 mA h g-1, average open-circuit voltage of 0.97 V, and small volume expansion of 1%. Remarkably, penta-SiCN exhibits robust wettability towards the electrolytes (solvent molecules and metal salts) widely used in commercial LIBs, indicating the excellent compatibility in electrode applications. These intriguing theoretical findings make penta-SiCN a high performance anode material for LIBs.

9.
Phys Chem Chem Phys ; 25(42): 28814-28823, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37850539

ABSTRACT

Sodium-ion batteries (SIBs) have attracted much attention due to their abundant earth-reserves and low cost. Two-dimensional (2D) Dirac materials show great application prospects as anodes for SIBs because of their excellent electronic conductivity. We explore the performances of AlB4 (Al2B2) monolayers and bilayers as anodes for SIBs by using first-principles calculations. The AlB4 (Al2B2) monolayer exhibits a high theoretical storage capacity of 954.15 (709.17) mA h g-1 and a low diffusion barrier of 0.36 (0.03) eV. The calculated average open-circuit voltage (0.68/0.18 V) falls within the acceptance range of 0.1-1.0 V for anode materials. The fully sodiated AlB4 (Al2B2) monolayer shows a tiny lattice expansion of 0.9% (2.4%), suggesting good reversibility. Furthermore, in comparison with the AlB4 (Al2B2) monolayer, the AlB4 (Al2B2) bilayer can provide stronger binding with Na on the outside surface. These results contribute to a better understanding of the AlB4 (Al2B2) monolayers and bilayers as potential high-performance anode materials for SIBs.

10.
Phys Chem Chem Phys ; 25(37): 25344-25352, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37703031

ABSTRACT

Giant magnetoresistance was first experimentally discovered in three-dimensional magnetic tunnel junctions (MTJs) in the late 1980s and is of great importance in nonvolatile memory applications. How to achieve a magnetoresistance as large as possible is always a central task in the study of MTJs. However, it is normally only of the order of magnitude of tens of percent in traditional MTJs. The ideal situation is the metal-insulator transition together with the magnetization reversal of one magnetic lead. In this work, we will show that this can be achieved using a two-dimensional ferromagnetic zigzag SiC nanoribbon junction based on quantum transport calculations performed with a combination of density functional theory and non-equilibrium Green's function. Specifically, with the magnetization configuration switching of the two leads from parallel to anti-parallel, the junction will change abruptly from a conducting state to an insulating state, although the two leads are always metallic, with both spin up and spin down channels crossing the Fermi level simultaneously. Extensive analysis indicates that the insulating state in the anti-parallel magnetic configuration originates not from any present mechanisms that cause full suppression of electron transmission but from momentum direction mismatching. This finding suggests a fantastic mechanism for achieving magnetoresistance or electrical switching in nanoscale devices by manipulating band dispersion.

11.
Phys Chem Chem Phys ; 25(27): 18158-18165, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37386910

ABSTRACT

Ferroelectric tunnel junctions (FTJs) have great potential in nonvolatile memory devices and have been extensively studied in recent years. Compared with conventional FTJs based on perovskite-type oxide materials as the barrier layer, two-dimensional (2D) van der Waals ferroelectric materials are advantageous in improving the performance of FTJs and achieving miniaturization of FTJ devices due to the features such as atomic thickness and ideal interfaces. In this work, we present a 2D out-of-plane ferroelectric tunnel junction (FTJ) constructed using graphene and bilayer-In2Se3. Using density functional calculations combined with the nonequilibrium Green's function technique, we investigate the electron transport properties in the graphene/bilayer-In2Se3 (BIS) vdW FTJ. Our calculations show that the FTJ we constructed can be switched from ferroelectric to antiferroelectric by changing the relative dipole arrangement of the BIS to form multiple nonvolatile resistance states. Since the charge transfer between the layers varies for the four different polarization states, the TER ratios range from 103% to 1010%. The giant tunneling electroresistance and multiple resistance states in the 2D BIS-based FTJ suggest that it has great potential for application in nanoscale nonvolatile ferroelectric memory devices.

12.
Phys Chem Chem Phys ; 25(22): 15295-15301, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37222137

ABSTRACT

Two-dimensional (2D) carbon materials integrated with planar tetracoordinate carbon (ptC) and negative Poisson's ratio (NPR) provide a cornerstone for constructing multifunctional energy-storage devices. As a typical 2D carbon material, the pristine graphene is chemically inert, hindering its application in metal-ion batteries. Introducing the ptC in graphene can break the extended conjugation of π-electrons and lead to an enhanced surface reactivity. Inspired by the unique geometry of [4.6.4.6] fenestrane skeleton with ptC, we theoretically design a ptC-containing 2D carbon allotrope, namely THFS-carbon. It is intrinsically metallic with excellent dynamical, thermal, and mechanical stabilities. The Young's modulus along the x direction (311.37 N m-1) is comparable to that of graphene. Intriguingly, THFS-carbon possesses an in-plane half-NPR distinct from most other 2D crystals. As a promising anode for sodium-ion batteries, THFS-carbon delivers an ultra-high theoretical storage capacity (2233 mA h g-1), a low diffusion energy barrier (0.03-0.05 eV), a low open-circuit voltage (0.14-0.40 V), and a good reversibility for Na insertion/extraction.

13.
Phys Chem Chem Phys ; 25(16): 11513-11521, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039312

ABSTRACT

Na-ion batteries (NIBs) have attracted a great deal of attention for large-scale electric energy storage due to their inherent safety, natural abundant resources, and low cost. The exploration of suitable anode materials is the major challenge in advancing NIB technology. On the basis of first-principles calculations, we systematically explore the potential performance of two-dimensional (2D) TiCl2 as an electrode material for NIBs. Monolayer TiCl2 can be easily exfoliated from the bulk structure with a small exfoliation energy of 0.64 J m-2. It shows good stability, as demonstrated by its high cohesive energy, positive phonon modes, and high thermal stability. Monolayer TiCl2 has high storage capacity (451.3 mA h g-1), low diffusion energy barrier (0.02-0.14 eV), moderate average open-circuit voltage (0.81 V), and small lattice change (2.37%). Moreover, bilayer TiCl2 can significantly enhance the Na adsorption strength but reduce the Na-ion diffusion ability. These results suggest that TiCl2 is a promising anode candidate for NIBs.

14.
J Agric Food Chem ; 71(13): 5391-5402, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36971245

ABSTRACT

Drought adaptation of plants is closely related to resistance and tolerance to drought stress as well as the ability to recover after the elimination of the stress. Glycyrrhiza uralensis Fisch is a commonly applied herb whose growth and development are greatly affected by drought. Here, we provide the first comprehensive analysis of the transcriptomic, epigenetic, and metabolic responses of G. uralensis to drought stress and rewatering. The hyper-/hypomethylation of genes may lead to up-/downregulated gene expression, and epigenetic changes can be regarded as an important regulatory mechanism of G. uralensis under drought stress and rewatering. Moreover, integrated transcriptome and metabolome analysis revealed that genes and metabolites involved in pathways of antioxidation, osmoregulation, phenylpropanoid biosynthesis, and flavonoid biosynthesis may regulate the drought adaptation of G. uralensis. This work provides crucial insights into the drought adaptation of G. uralensis and offers epigenetic resources for cultivating G. uralensis with high drought adaptation.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/metabolism , Multiomics , Droughts , Antioxidants/metabolism , Transcriptome , Glycyrrhiza/genetics
15.
Phys Chem Chem Phys ; 25(8): 6519-6526, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36786369

ABSTRACT

High specific capacity and fast charge/discharge rate are important indicators for the development of next-generation ion batteries. Compared with conventional monovalent ion batteries like lithium-ion batteries and sodium-ion batteries, multivalent ion batteries have attracted extensive attention owing to their high energy densities. Here, we systematically explore the interactions between Mg atoms and α-beryllene monolayers by means of density functional theory calculations. Mg atoms can be adsorbed stably on α-beryllene monolayers with the adsorption energy of -0.24 eV. The low diffusion energy barriers (0.099/0.101 eV) indicate the rapid mobility of Mg during the charge/discharge process. Moreover, the α-beryllene monolayer exhibits an ultra-high theoretical specific capacity of 5956 mA h g-1 for Mg, a low average open-circuit voltage of 0.24 V, and a tiny volume change of -1.08%. Finally, the constructed h-BN/α-beryllene heterostructure shows that h-BN can serve as a protective cover to preserve pristine α-beryllene in respect of metallicity, Mg adsorption capability, and fast ionic mobility. The above mentioned outstanding results make α-beryllene a promising anode material for magnesium-ion batteries.

16.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6812-6816, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212039

ABSTRACT

By studying various ancient texts such as herbal classics and medical literature from different eras, it was found that there were discrepancies in the records about Bambusae Concretio Silicea(Tian Zhu Huang). In order to establish an accurate foundation, this research was based on ancient herbal literature and combined with plant morphology and investigative studies to examine its earliest mentions in ancient texts, nomenclature, medicinal properties, indications, and quality assessment standards. In the early records, Bambusae Concretio Silicea was referred to by several different names, such as "Zhu Huang" "Tian Zhu Huang" "Zhu Gao" "Zhu Tang", and "Zhu Huang". The earliest known formal usage of the name "Tian Zhu Huang" was found in the book Ri Hua-zi's Materia Medica(Ri Hua Zi Ben Cao). Throughout various ancient texts, the earliest recorded information about Bambusae Concretio Silicea also appeared in Ri Hua-zi's Materia Medica, not in Materia Medica of Sichuan(Shu Ben Cao) or other ancient texts. Ri Hua-zi's Materia Medica provided relevant descriptions of its origin, medicinal properties, and indications, albeit with some errors due to limited knowledge. However, this has been a valuable starting point for future research on Bambusae Concretio Silicea and holds pioneering significance in forming a mature system. As the research delved deeper, the medicinal properties of Bambusae Concretio Silicea have been consistent since Ri Hua-zi's Materia Medica, and the understanding has gradually improved through years of clinical verification. During the investigation process, the authors found limited records on the quality evaluation of Bambusae Concretio Silicea in ancient texts. Although the information is scarce, it serves as a foundational basis for establishing corresponding quality grading standards for Bambusae Concretio Silicea in the future.


Subject(s)
Materia Medica , China , Medicine, Chinese Traditional
17.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4055-4065, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046895

ABSTRACT

The content of total flavonol glycosides in Ginkgo Folium in the planting bases was determined by high performance liquid chromatography(HPLC).The samples were extracted by reflux with methanol-25% hydrochloric acid.The HPLC conditions were as follows: Agilent ZORBAX SB-C_(18) column(4.6 mm×250 mm, 5 µm), isocratic elution with mobile phase of 0.4% phosphoric acid solution-methanol(45∶55), flow rate of 1 mL·min~(-1), column temperature of 30 ℃, detection wavelength of 360 nm, and injection vo-lume of 10 µL.A method for the determination of terpene lactones in Ginkgo Folium was established based on ultra-high performance liquid chromatograph-triple-quadrupole/linear ion-trap tandem mass spectrometry(UPLC-QTRAP-MS/MS).The UPLC conditions were as below: gradient elution with acetonitrile-0.1% formic acid, flow rate of 0.2 mL·min~(-1), column temperature of 30 ℃, sample chamber temperature of 10 ℃, and injection volume of 10 µL.The ESI~+and multiple reaction monitoring(MRM) were adopted for the MS.The above methods were used to determine the content of total flavonol glycosides and terpene lactones in 99 batches of Ginkgo Folium from 6 planting bases, and the results were statistically analyzed.The content of flavonoids and terpene lactones in Ginkgo Folium from different origins, from trees of different ages, harvested at different time, from trees of different genders, and processed with different methods was compared.The results showed that the content of total flavonol glucosides in 99 Ginkgo Folium samples ranged from 0.38% to 2.08%, and the total content of the four terpene lactones was in the range of 0.03%-0.87%.The method established in this study is simple and reliable, which can be used for the quantitative analysis of Ginkgo Folium.The research results lay a basis for the quality control of Ginkgo Folium.


Subject(s)
Flavonoids , Ginkgo biloba , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Flavonols , Glycosides/analysis , Lactones/analysis , Methanol , Plant Leaves/chemistry , Tandem Mass Spectrometry/methods , Terpenes/analysis , Trees
18.
J Phys Condens Matter ; 34(36)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35767983

ABSTRACT

Two-dimensional (2D) materials provide tremendous opportunities for next-generation energy storage technologies. We theoretically propose 2D group-IV oxides (α-, ß-, andγ-CXO, X = Si/Ge). Among them,α-CXO monolayers, composed of the C-O-X skeleton of silyl (germyl) methyl ether molecules, are the most stable phase.α-CXO possess robust dynamical, mechanical, and thermal stabilities. Remarkably,α-CGeO has an unusual negative Poisson's ratio (NPR). However,α-CSiO displays a bidirectional half-auxeticity, different from all the already known NPR behaviors. The intrinsic moderate direct-band-gap, high carrier mobility, and superior optical absorption ofα-CXO make them attractive for optoelectronics applications. A series ofα-CXO-based excitonic solar cells can achieve high power conversion efficiencies. Besides,α-CXO monolayers are promising anode materials for sodium- and potassium-ion batteries, exhibiting not only the high specific capacity (532-1433 mA h g-1) but also low diffusion barrier and open-circuit voltage. In particular, the specific capacity of K onα-CSiO exhibits one of the highest values ever recorded in 2D materials. The multifunctionality rendersα-CXO promising candidates for nanomechanics, nanoelectronics, and nano-optics.

19.
Nanoscale ; 14(16): 6118-6125, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35388866

ABSTRACT

Sodium-ion batteries (SIBs) have attracted great attention owing to their low cost and inherent safety. High-performance anode materials for SIBs should possess intrinsically metallic characteristic and be composed of non-toxic, earth abundant, and lightweight elements. We predict a two-dimensional Mg material (named magnesene) to be an excellent anode material, which can meet these design requirements. It is demonstrated to be stable in terms of the cohesive energy, phonon spectrum, ab initio molecular dynamics simulation, and elastic constants. The magnesene monolayer exhibits good SIB performances, including a high storage capacity of 551.3 mA h g-1, low diffusion energy barrier (0.16-0.19 eV), low open-circuit voltage (0.71-0.82 V), and small volume change (4.7%). Moreover, graphene or h-BN on top of magnesene could serve as a protective cover to preserve the performances of pristine magnesene, such as metallicity, strong Na adsorption capability, and fast ionic mobility. These intriguing theoretical findings make magnesene a promising anode material for SIBs.

20.
J Agric Food Chem ; 70(13): 4076-4085, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35321541

ABSTRACT

Quercetin 3-O-N-acetylgalactosamine (Q3GalNAc), a derivative of dietary hyperoside, had never been enzymatically synthesized due to the lack of well-identified N-acetylgalactosamine-transferase (GalNAc-T). Herein, PhUGT, an identified flavonoid 3-O-galactosyltransferase from Petunia hybrida, was demonstrated to display quercetin GalNAc-T activity, transferring a N-acetylgalactosamine (GalNAc) from UDP-N-acetylgalactosamine (UDP-GalNAc) to the 3-OH of quercetin to form Q3GalNAc with a low conversion of 11.7% at 40 °C for 2 h. Protein engineering was thus performed, and the resultant PhUGT variant F368T got an enhanced conversion of 75.5% toward UDP-GalNAc. The enzymatically synthesized Q3GalNAc exhibited a comparable antioxidant activity with other quercetin 3-O-glycosides. Further studies revealed that PhUGT was a donor promiscuous glycosyltransferase (GT), recognizing seven sugar donors. This finding overturned a previous notion that PhUGT exclusively recognized UDP-galactose (UDP-Gal). The reason why PhUGT was mistaken for a UDP-Gal-specific GT was demonstrated to be a shorter reaction time, in which many quercetin 3-O-glycosides, except hyperoside, could not be effectively synthesized. The fact that the microbial cell factory expressing PhUGT could yield an array of Q3Gs further confirmed the donor promiscuity of PhUGT. This study laid a foundation for the scale production of Q3GalNAc and provided a potent biocatalyst capable of glycodiversifying quercetin as well.


Subject(s)
Acetylgalactosamine , Glycosyltransferases , Acetylgalactosamine/metabolism , Antioxidants , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Protein Engineering , Quercetin
SELECTION OF CITATIONS
SEARCH DETAIL
...