Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37688273

ABSTRACT

Thermoplastic polyurethane (TPU) materials have shown promise in tissue engineering applications due to their mechanical properties and biocompatibility. However, the addition of nanoclays to TPU can further enhance its properties. In this study, the effects of nanoclays on the microstructure, mechanical behavior, cytocompatibility, and proliferation of TPU/nanoclay (TPUNC) composite scaffolds were comprehensively investigated. The dispersion morphology of nanoclays within the TPU matrix was examined using transmission electron microscopy (TEM). It was found that the nanoclays exhibited a well-dispersed and intercalated structure, which contributed to the improved mechanical properties of the TPUNC scaffolds. Mechanical testing revealed that the addition of nanoclays significantly enhanced the compressive strength and elastic resilience of the TPUNC scaffolds. Cell viability and proliferation assays were conducted using MG63 cells cultured on the TPUNC scaffolds. The incorporation of nanoclays did not adversely affect cell viability, as evidenced by the comparable cell numbers between nanoclay-filled and unfilled TPU scaffolds. The presence of nanoclays within the TPUNC scaffolds did not disrupt cell adhesion or proliferation. The incorporation of nanoclays improved the dispersion morphology, enhanced mechanical performance, and maintained excellent biocompatibility. These findings suggest that TPUNC composites have great potential for tissue engineering applications, providing a versatile and promising scaffold material for regenerative medicine.

2.
ACS Appl Mater Interfaces ; 14(11): 13379-13387, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35266694

ABSTRACT

The development of potassium-ion batteries (PIBs) is challenged by the shortage of stable cathode materials capable of reversibly hosting the large-sized K+ (1.38 Å), which is prone to cause severe structural degradation and complex phase evolution during the potassiation/depotassiation process. Here, we identified that anionic doping of the layered oxides for PIBs is effective to combat their capacity fading at high voltage (>4.0 V). Taking P2-type K2/3Mn7/9Ni1/9Ti1/9O17/9F1/9 (KMNTOF) as an example, we showed that the partial substitution of O2- by F- enlarged the interlayer distance of the K2/3Mn7/9Ni1/9Ti1/9O2 (KMNTO), which becomes more favorable for fast K+ transition without violent structural destruction. Meanwhile, based on the experimental data and theoretical results, we identified that the introduction of F- anions effectively increased the redox-active Mn cationic concentration by lowering the average valence of the Mn element, accordingly providing more reversible capacity derived from the Mn3+/4+ redox couple, rather than oxygen redox. This anionic doping strategy enables the KMNTOF cathode to deliver a high reversible capacity of 132.5 mAh g-1 with 0.53 K+ reversible (de)intercalation in the structure. We expect that the discovery provides new insights into structural engineering for pursuing stable cathodes to facilitate the future applications of high-performance PIBs.

3.
Rare Metals ; 41(4): 1129-1141, 2022.
Article in English | MEDLINE | ID: mdl-35068851

ABSTRACT

Abstract: The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed severe threats to human health, public safety, and the global economy. Metal nutrient elements can directly or indirectly take part in human immune responses, and metal-related drugs have served as antiviral drugs and/or enzyme inhibitors for many years, providing potential solutions to the prevention and treatment of COVID-19. Metal-based drugs are currently under a variety of chemical structures and exhibit wide-range bioactivities, demonstrating irreplaceable advantages in pharmacology. This review is an intention to summarize recent progress in the prevention and treatment strategies against COVID-19 from the perspective of metal pharmacology. The current and potential utilization of metal-based drugs is briefly introduced. Specifically, metallohydrogels that have been shown to present superior antiviral activities are stressed in the paper as potential drugs for the treatment of COVID-19.

4.
J Phys Condens Matter ; 34(8)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34794133

ABSTRACT

Polyurethane foams (PUFs) are found everywhere in our daily life, but they suffer from poor fire resistance. In this study, expansible graphite (EG) as flame retardant was incorporated into PUFs to improve material fire resistance. With the presence of EGs in the PU matrix, bubble size in PUF became smaller as confirmed by the scanning electron microscopy. The mass density of PUFs is directly proportional to the content of EG additive. The compression strengths of EG0/PUF and EG30/PUF decrease from 0.51 MPa to 0.29 MPa. The Fourier transform infrared spectroscopy (FTIR) analysis of RPUFs showed that the addition of EGs did not change the functional group structures of RPUFs. Thermo-gravimetric analysis (TGA) testing results showed that the carbon residue weight of EG30/PUF is higher than other PU composite foams. The combination of TGA and FTIR indicated that the EG addition did not change the thermal decomposition products of EG0/PUF, but effectively inhibited its thermal decomposition rate. Cone calorimeter combustion tests indicated that the peak of the heat release rate of EG30/PUF significantly decreased to 100.5 kW m-2compared to 390.6 kW m-2for EG0/PUF. The ignition time of EG/PUF composites also increased from 2 s to 11 s with incorporation of 30 wt% EGs. The limiting oxygen index (LOI) and UL-94 standard tests show that the LOI of EG30/PUF can reach 55 vol%, and go through V-0 level. This study showed that adding EG into PU foams could significantly improve the thermal stability and flame retardancy properties of EG/PUF composites without significantly sacrificing material compression strength. The research results provide useful guidelines on industrial production and applications of PUFs.

5.
Adv Mater ; 32(17): e2000505, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32162736

ABSTRACT

Potassium ion batteries (KIBs) have emerged as a promising energy storage system, but the stability and high rate capability of their electrode materials, particularly carbon as the most investigated anode ones, become a primary challenge. Here, it is identified that pitch-derived soft carbon, a nongraphitic carbonaceous species which is paid less attention in the battery field, holds special advantage in KIB anodes. The structural flexibility of soft carbon makes it convenient to tune its crystallization degree, thereby modulating the storage behavior of large-sized K+ in the turbostratic carbon lattices to satisfy the need in structural resilience, low-voltage feature, and high transportation kinetics. It is confirmed that a simple thermal control can produce structurally optimized soft carbon that has much better battery performance than its widely reported carbon counterparts such as graphite and hard carbon. The findings highlight the potential of soft carbon as an interesting category suitable for high-performance KIB electrode and provide insights for understanding the complicated K+ storage mechanisms in KIBs.

6.
ACS Appl Mater Interfaces ; 12(11): 13182-13188, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32097562

ABSTRACT

Hollow carbon nanospheres (HCNs) have found broad applications in a large variety of application fields. Unfortunately, HCNs are known for their tedious operations and are incompetent for scalable synthesis for those widely adopted nanocasting-based routes. Here, we report a facile and highly efficient method for the creation of hollow carbon structures by tuning the growth kinetics of its polymeric precursor. We identified that a controlled polymerization of Cu2+-poly(m-phenylenediamine) (Cu-PmPD) could form nanospheres with modulated inner chemical inhomogeneity, where the core of the particles was low in polymerization degree and water soluble, whereas the outer part was water insoluble. Therefore, a simple water washing of the prepared polymeric particles directly formed hollow nanospheres with a good control on the structural features including their cavity size and shell thickness. HCNs were formed through a following heat treatment and were able to exhibit promising potential as a stable anode material when tested in potassium-ion batteries.

7.
Small ; 15(32): e1901019, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30997739

ABSTRACT

As lithium-ion batteries continue to climb to even higher energy density, they meanwhile cause serious concerns on their stability and reliability during operation. To make sure the electrode materials, particularly cathode materials, are stable upon extended cycles, surface modification becomes indispensable to minimize the undesirable side reaction at the electrolyte-cathode interface, which is known as a critical factor to jeopardizing the electrode performance. This Review is targeted at a precise surface control of cathode materials with focus on the synthetic strategies suitable for a maximized surface protection ensured by a uniform and conformal surface coating. Detailed discussions are taken on the formation mechanism of the designated surface species achieved by either wet-chemistry routes or instrumental ones, with attention to the optimized electrochemical performance as a result of the surface control, accordingly drawing a clear image to describe the synthesis-structure-performance relationship to facilitate further understanding of functional electrode materials. Finally, perspectives regarding the most promising and/or most urgent developments for the surface control of high-energy cathode materials are provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...