Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Poverty ; 7(1): 77, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30089510

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly endemic in Xiji County of Ningxia Hui Autonomous Region (NHAR) in China where the control campaign based on dog de-worming with praziquantel has been undertaken over preceding decades. This study is to determine the current prevalence of Echinococcus granulosus and E. multilocularis in domestic dogs and monitor the echinococcosis transmission dynamics. METHODS: Study villages were selected using landscape patterns (Geographic Information System, GIS) for Echinococcus transmission "hot spots", combined with hospital records identifying risk areas for AE and CE. A survey of 750 domestic dogs, including copro-sampling and owner questionnaires, from 25 selected villages, was undertaken in 2012. A copro-multiplex PCR assay was used for the specific diagnosis of E. granulosus and E. multilocularis in the dogs. Data analysis, using IBM SPSS Statistics, was undertaken, to compare the prevalence of the two Echinococcus spp. in dogs between four geographical areas of Xiji by the χ2 test. Univariate analysis of the combinations of outcomes from the questionnaire and copro-PCR assay data was carried out to determine the significant risk factors for dog infection. RESULTS: The highest de-worming rate of 84.0% was found in the northwest area of Xiji County, and significant differences (P <  0.05) in the de-worming rates among dogs from the four geographical areas of Xiji were detected. The highest prevalence (19.7%, 59/300) of E. multilocularis occurred in northwest Xiji, though the highest prevalence (18.1%, 38/210) of E. granulosus occurred in southwest Xiji. There was no significant difference (P >  0.05) in the prevalence of E. granulosus in dogs from the northwest, southwest, northeast, and southeast of Xiji, but there were significant differences (P <  0.05) between dogs infected with E. multilocularis from the four areas. None of the other independent variables was statistically significant. CONCLUSIONS: The results from this study indicate a high prevalence of both E. granulosus and E. muiltilocularis in dogs in Xiji County, NHAR. Transmission of E. multilocularis was more impacted by geographical risk-factors in Xiji County than that of E. granulosus. Dogs have the potential to maintain the transmission of both species of Echinococcus within local Xiji communities, and the current praziquantel dosing of dogs appears to be ineffective or poorly implemented in this area.


Subject(s)
Dog Diseases/epidemiology , Echinococcosis/veterinary , Endemic Diseases , Animals , Anthelmintics/pharmacology , China/epidemiology , Dog Diseases/drug therapy , Dog Diseases/parasitology , Dog Diseases/transmission , Dogs , Echinococcosis/drug therapy , Echinococcosis/epidemiology , Echinococcosis/transmission , Echinococcus granulosus/drug effects , Echinococcus granulosus/physiology , Echinococcus multilocularis/drug effects , Echinococcus multilocularis/physiology , Feces/parasitology , Female , Male , Praziquantel/pharmacology , Prevalence , Rural Population
2.
Infect Genet Evol ; 45: 408-414, 2016 11.
Article in English | MEDLINE | ID: mdl-27282470

ABSTRACT

The metacestode of Echinococcus shiquicus has been recorded previously in the lung and liver of its intermediate host, the plateau pika (Ochotona curzoniae), but there is limited information regarding other organ sites. There is also limited evidence of intra-specific genetic variation within E. shiquicus. A PCR-amplified mitochondrial (mt) nad1 gene fragment (approximately 1400bp in size), with unique EcoRI and SspI restriction sites, was used to distinguish cysts or cyst-like lesions of E. shiquicus from E. multilocularis. Then, the complete mt nad1 and cox1 genes for the E. shiquicus isolates were amplified and sequenced. Phylogenetic tree and haplotype network analyses for the isolates were then generated based on a concatenated dataset of the nad1 and cox1 genes using the neighbour-joining (NJ) method and TCS1.21 software. Nineteen of eighty trapped pikas were found to harbor cysts (71 in total) when dissected at the survey site. Seventeen animals had cysts (fertile) present only in the lungs, one animal had fertile cysts in the lungs and spleen, and one individual had an infertile kidney cyst. Restriction endonuclease analysis of a fragment of the nad1 gene indicated all the cysts were due to E. shiquicus. Genetic diversity analysis revealed that the nad1 and cox1 genes varied by 0.1-1.2% and 0.1-1.0%, respectively. Haplotype network analysis of the concatenated nad1 and cox1 sequences of the isolates showed they were classified into at least 6 haplotypes, and different haplotype percentages ranged from 4.2% to 29.6%. Although, high haplotype diversity was evident in the study area, the complete nad1 and cox1 gene sequences obtained indicated that all samples represented isolates of E. shiquicus. The study has also provided a new PCR-restriction endonuclease-based method to rapidly distinguish E. shiquicus from E. multilocularis which provides a useful tool for epidemiological investigations where the two species overlap.


Subject(s)
Echinococcus/genetics , Genetic Variation/genetics , Lagomorpha/parasitology , Animals , China , Cysts/parasitology , Cysts/pathology , Echinococcosis/parasitology , Echinococcosis/pathology , Haplotypes/genetics , Lung/parasitology , Lung/pathology , Phylogeny
3.
PLoS Negl Trop Dis ; 9(9): e0004084, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26393793

ABSTRACT

BACKGROUND: Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. METHODOLOGY/PRINCIPAL FINDINGS: A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. CONCLUSIONS/SIGNIFICANCE: The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification of the Echinococcus metacestode larva in intermediate hosts, a stage that often cannot be identified to species on visual inspection.


Subject(s)
Echinococcosis/diagnosis , Echinococcosis/parasitology , Echinococcus/classification , Echinococcus/genetics , Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Parasitology/methods , Animals , DNA Primers/genetics , DNA, Mitochondrial/genetics , Dogs , Echinococcosis/veterinary , Electron Transport Complex IV/genetics , Feces/parasitology , Humans , Mice , NADH Dehydrogenase/genetics , Sensitivity and Specificity , Tibet/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...