Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Drug Test Anal ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152891

ABSTRACT

The effective implementation of drug precursor legislation has driven the innovation and design of new alternative substances. The application of 1,3-dicarbonyl precursors as alternative precursors for the synthesis of 1-phenyl-2-propanone (P2P) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) has created new challenges to legal control. Their 1,3-dicarbonyl structure allows the precursors to exist as an equilibrium mixture of the tautomeric diketo and keto-enolic forms during the nuclear magnetic resonance (NMR) analysis. In this study, the keto-enol tautomerism of four 1,3-dicarbonyl drug pre-precursors, α-phenylacetoacetamide (APAA), methyl α-phenylacetoacetate (MAPA), ethyl α-phenylacetoacetate (EAPA), and methyl 2-(benzo[d][1,3]dioxol-5-yl)-3-oxobutanoate (MAMDPA) were investigated through NMR. One-dimensional (1D) and 2D NMR were combined to assign signals for the diketo and keto-enolic tautomers. Results showed that the keto-enol tautomerism was solvent-dependent but was also influenced by the substituent present in the molecule. Further, the analysis results indicated that majority of substances existed mainly in the diketo form. The enol-keto equilibrium constant (Keq) was stable in dimethyl sulfoxide-d6 and chloroform-d, while unstable for some compounds in acetone-d6 and deuterated methanol. The presence of impurities in the seized sample may disrupt the equilibrium between keto-enol tautomers in 1,3-dicarbonyl precursors. After the optimization of several key quantitative parameters, a quantitative NMR method for the quantification of 1,3-dicarbonyl drug precursors were also developed to facilitate their quantitative analysis. This is the first study to investigate the keto-enol tautomerism and quantification of 1,3-dicarbonyl drug precursors by NMR, providing a new approach for structure analysis and quantification of new precursor analogues.

2.
New Phytol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044442

ABSTRACT

Plants delicately regulate endogenous auxin levels through the coordination of transport, biosynthesis, and inactivation, which is crucial for growth and development. While it is well-established that the actin cytoskeleton can regulate auxin levels by affecting polar transport, its potential role in auxin biosynthesis has remained largely unexplored. Using LC-MS/MS-based methods combined with fluorescent auxin marker detection, we observed a significant increase in root auxin levels upon deletion of the actin bundling proteins AtFIM4 and AtFIM5. Fluorescent observation, immunoblotting analysis, and biochemical approaches revealed that AtFIM4 and AtFIM5 affect the protein abundance of the key auxin synthesis enzyme YUC8 in roots. AtFIM4 and AtFIM5 regulate the auxin synthesis enzyme YUC8 at the protein level, with its degradation mediated by the 26S proteasome. This regulation modulates auxin synthesis and endogenous auxin levels in roots, consequently impacting root development. Based on these findings, we propose a molecular pathway centered on the 'actin cytoskeleton-26S proteasome-YUC8-auxin' axis that controls auxin levels. Our findings shed light on a new pathway through which plants regulate auxin synthesis. Moreover, this study illuminates a newfound role of the actin cytoskeleton in regulating plant growth and development, particularly through its involvement in maintaining protein homeostasis via the 26S proteasome.

3.
Forensic Sci Int ; 357: 111974, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447346

ABSTRACT

Afghanistan and Myanmar are two overwhelming opium production places. In this study, rapid and efficient methods for distinguishing opium from Afghanistan and Myanmar were developed using infrared spectroscopy (IR) coupled with multiple machine learning (ML) methods for the first time. A total of 146 authentic opium samples were analyzed by mid-IR (MIR) and near-IR (NIR), within them 116 were used for model training and 30 were used for model validation. Six ML methods, including partial least squares discriminant analysis (PLS-DA), orthogonal PLS-DA (OPLS-DA), k-nearest neighbour (KNN), support vector machine (SVM), random forest (RF), and artificial neural networks (ANNs) were constructed and compared to get the best classification effect. For MIR data, the average of precision, recall and f1-score for all classification models were 1.0. For NIR data, the average of precision, recall and f1-score for different classification models ranged from 0.90 to 0.94. The comparison results of six ML models for MIR and NIR data showed that MIR was more suitable for opium geography classification. Compared with traditional chromatography and mass spectrometry profiling methods, the advantages of MIR are simple, rapid, cost-effective, and environmentally friendly. The developed IR chemical profiling methodology may find wide application in classification of opium from Afghanistan and Myanmar, and also to differentiate them from opium originating from other opium producing countries. This study presented new insights into the application of IR and ML to rapid drug profiling analysis.


Subject(s)
Opium , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Afghanistan , Myanmar , Spectrophotometry, Infrared , Discriminant Analysis , Least-Squares Analysis , Support Vector Machine
4.
Fa Yi Xue Za Zhi ; 39(5): 457-464, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-38006265

ABSTRACT

OBJECTIVES: To establish the GC-MS qualitative and quantitative analysis methods for the synthetic cannabinoids, its main matrix and additives in suspicious electronic cigarette (e-cigarette) oil samples. METHODS: The e-cigarette oil samples were analyzed by GC-MS after diluted with methanol. Synthetic cannabinoids, its main matrix and additives in e-cigarette oil samples were qualitatively analyzed by the characteristic fragment ions and retention time. The synthetic cannabinoids were quantitatively analyzed by using the selective ion monitoring mode. RESULTS: The linear range of each compound in GC-MS quantitative method was 0.025-1 mg/mL, the matrix recovery rate was 94%-103%, the intra-day precision relative standard deviations (RSD) was less than 2.5%, and inter-day precision RSD was less than 4.0%. Five indoles or indazole amide synthetic cannabinoids were detected in 25 e-cigarette samples. The main matrixes of e-cigarette samples were propylene glycol and glycerol. Additives such as N,2,3-trimethyl-2-isopropyl butanamide (WS-23), glycerol triacetate and nicotine were detected in some samples. The content range of synthetic cannabinoids in 25 e-cigarette samples was 0.05%-2.74%. CONCLUSIONS: The GC-MS method for synthesizing cannabinoid, matrix and additive in e-cigarette oil samples has good selectivity, high resolution, low detection limit, and can be used for simultaneous qualitative and quantitative analysis of multiple components; The explored fragment ion fragmentation mechanism of the electron bombardment ion source of indole or indoxamide compounds helps to identify such substances or other compounds with similar structures in cases.


Subject(s)
Cannabinoids , Electronic Nicotine Delivery Systems , Illicit Drugs , Gas Chromatography-Mass Spectrometry/methods , Illicit Drugs/analysis , Indazoles/chemistry , Glycerol/analysis , Indoles/chemistry , Ions
5.
Drug Test Anal ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37997567

ABSTRACT

This study presents a new strategy to discriminate between opium samples obtained from different geographical regions. Nuclear magnetic resonance (NMR) profiling and chemometrics were applied to geographical classification of opium originating from Myanmar and Afghanistan, which are two major opium producing countries in the world. A total of 50 Myanmar and 46 Afghanistan authentic opium samples were analyzed by 1 H-NMR, and the chemical profiles were characterized. Different sample preparation procedures, data processing methods, and chemometrics were compared to obtain the best classification effect. It was found that drying and the addition of buffer solutions were unnecessary for classification purposes; thus, the gum opium samples were extracted directly with CD3 OD, which shortened sample preparation time. A full discrimination between the two geographical origins was achieved by 1 H-NMR profiling and orthogonal partial least squares discriminant analysis. All 30 opium samples were classified correctly by the developed orthogonal partial least squares discriminant analysis model. Compared with traditional chromatography and mass spectrometry profiling methods, the 1 H-NMR profiling method was faster (with instrument analysis time of less than 3 min) and reproducible. This study provides new insights into the applying of NMR profiling and chemometrics to rapid drug profiling analysis.

6.
Talanta ; 255: 124257, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36630788

ABSTRACT

For the first time, the identification and quantification of trace level of new psychoactive substances (NPS) in a complex chocolate matrix have been reported. Since the beginning of 2022, suspected NPS-infused chocolate samples confiscated in inbound packages have been continuously sent to our laboratory for analysis. The qualitative gas chromatography-mass spectrometry (GC-MS) results were verified by 1H nuclear magnetic resonance (1H NMR) and 19F NMR to distinguish between potential aromatic isomers. A total of 11 NPS including deoxymethoxetamine, 3-OH-PCP, 6-APB, 4-APB, 4-OH-MiPT, 3-FEA, 2-FEA, 3-MMC, bromazolam, 2-FDCK, and ADB-BUTINACA were detected in 65 seized chocolate samples. A general 1H quantitative NMR (1H qNMR) method for quantification of 297 types of NPS in complex chocolate matrixes was devised for the first time after rigorous analysis of various critical features of merit, including suitable deuterated solvent, internal standard, quantitative peaks, and instrument acquisition parameters. Validation of the method using six different types of NPS afforded limits of detection of 0.05-0.1 mg/mL, limits of quantification of 0.01-0.03 mg/mL, repeatability and reproducibility lower than 0.5% and 3.6%, recoveries of 91.7%∼104.4%, and absence of matrix effect. The quantitative analysis of 65 seized chocolate samples by 1H qNMR and 19F qNMR showed that the content of NPS was in the range of 0.5 mg/g∼44.1 mg/g. Generally, the developed qNMR method was simple, fast, precise, and can be performed without reference materials of NPS. Since the type and content of NPS are relatively random, chocolate consumers will face huge health risks. Therefore, this new trend of NPS-infused chocolate deserves and requires more attention from national NPS monitoring departments as well as forensic laboratories.


Subject(s)
Cacao , Chocolate , Gas Chromatography-Mass Spectrometry , Chocolate/analysis , Reproducibility of Results , Psychotropic Drugs/analysis , Magnetic Resonance Spectroscopy
7.
Drug Test Anal ; 15(1): 47-57, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35985772

ABSTRACT

In this study, the analytical characterization of three cathinones and one N-pyrrolidinyl-substituted amphetamine derivative is described: 1-([3,4-methylenedioxyphenyl])-2-(propylamino)butan-1-one (N-propyl norbutylone 1), 1-([3,4-methylenedioxyphenyl])-2-(butylamino)butan-1-one (N-butyl norbutylone 2), 2-(benzylamino)-1-phenylheptan-1-one (N-benzyl norheptedrone 3), and 1-(1-[3,4-dimethoxyphenyl]propan-2-yl)pyrrolidine (N-pyrrolidinyl-3,4-DMA 4). The identification was based on ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS), gas chromatography-orbitrap MS (GC-Orbitrap-MS), nuclear magnetic resonance spectroscopy (NMR), and Fourier transform infrared (FT-IR). GC-Orbitrap-MS, with higher mass accuracy, benefit more on the accurate structure elucidation of product ions compared with the low-resolution GC-MS. The collision-induced dissociation (CID) and electron ionization (EI) pathways of these compounds were examined to assist forensic laboratories in elucidating the structure of new psychoactive substances (NPS) with similar structure in their case work. In addition, electron activated dissociation (EAD) was applied to analyze N-benzyl norheptedrone, which showed only one product ion in the CID mode. The result showed that for compound with limited product ions in the CID mode, the EAD mode can give more complementary information for structure elucidation. In addition, quantitative NMR (qNMR) was applied for the quantification of four powdered/crystal and two herbal blend seized samples. To our knowledge, no analytical data about the compounds 3 and 4 have appeared until now, making this the first report on these compounds.


Subject(s)
Gas Chromatography-Mass Spectrometry , Gas Chromatography-Mass Spectrometry/methods , Spectroscopy, Fourier Transform Infrared/methods , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods
8.
Forensic Sci Int ; 340: 111450, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152449

ABSTRACT

In this study, fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) served as a highly specific tool for identification of fluorinated new psychoactive substances (NPS) as well as a suitable analytical method for the accurate quantification of fluorinated NPS in different seized samples. In the first part of the study, 19F NMR spectroscopy of a number of different fluorinated NPS, including 51 synthetic cannabinoids, 8 synthetic cathinones, 7 phenethylamines, 8 fentanyl analogues, and 9 other types of compounds was conducted. The chemical shifts and multiplet of the primary fluorides (RCH2F), fluorobenzenes (ortho-ArF, meta-ArF, and para-ArF), and trifluoromethylbenzenes (ArCF3) were discussed in detail to illustrate the role of 19F signals as special fingerprints in assisting the structure identification of fluorine-containing NPS. To the best of our knowledge, this study is the largest evaluation of fluorinated NPS compounds by 19F NMR. The second part of this study dealt with the problems encountered in the 19F quantification procedure and the criteria to be considered for successful quantification by 19F NMR. General high field (HF)- and low field (LF)- 19F qNMR methods for the quantification of fluorinated NPS were established after the thorough discussion of NMR spectrum acquisition and processing parameters such as: transmitter frequency offset (O1P), spin-lattice relaxation time (T1), and different baseline correction methods. The limit of quantifications (LOQs) for HF-19F qNMR varied between 0.1 mg/mL and 0.2 mg/mL, and for LF-19F qNMR varied between 1.0 mg/mL and 2.0 mg/mL. The limit of detections (LODs) for HF-19F qNMR varied between 0.03 mg/mL and 0.06 mg/mL, and for LF-19F qNMR varied between 0.3 mg/mL and 0.6 mg/mL. Finally, the developed methods were applied for the quantification of fluorinated-NPS in seventeen herbal blends, e-liquid, tablet, and powder NPS seizures.


Subject(s)
Cannabinoids , Fluorine , Central Nervous System Agents , Fentanyl , Fluorides , Fluorine/chemistry , Fluorobenzenes , Magnetic Resonance Spectroscopy/methods , Phenethylamines , Powders
9.
Drug Test Anal ; 2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35716363

ABSTRACT

This study initially reported the selection and characterization of 17 unknown impurities attributed to the manufacture process of ketamine. A total of 150 seized ketamine samples were investigated through ultra-high-performance liquid chromatography-quadrupole-time of flight (UHPLC-Q-TOF). Seventeen characteristic impurities were selected in accordance with four criteria: The compound was detected in over 10% of all 150 seized ketamine samples, the compound had at least one nitrogen, the unsaturation of the compound was more than 5, and the compound was stable in the dilution solvent solution for 48 h. The accurate masses of the protonated molecules and product ions of the target impurities were obtained based on the full scan mode and the product ion mode of Q-TOF, respectively. Lastly, the possible structures of the above impurities were tentatively elucidated in accordance with the synthetic route of ketamine, protonated molecules, and MS2 product ions. All 17 impurities had the same skeleton of deschloroketamine (DCK), but were substituted with additional chlorine, hydroxyl, methyl, cyclohexane, and o-chlorophenyl cyclopentyl ketone substituents. Under the electrospray ionization (ESI), the above impurities showed similar characteristic fragment ions through the dissociation of the CH3 NH2, C2 H6 NH, H2 O, CO, C2 H4 O, C4 H6 , and C2 H2 moieties. The above impurities have been routinely used for the profiling analysis of seized ketamine samples in the National Narcotics Laboratory of China and employed to establish the tactical intelligence for law enforcement agencies.

10.
Drug Test Anal ; 14(2): 307-316, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34694738

ABSTRACT

To curb the manufacturing, trafficking, and abuse of synthetic cannabinoids, China implemented a class-wide regulation on synthetic cannabinoids in July 2021. Recently, three different types of synthetic cannabinoid analogs that were not covered by the generic definitions were detected in seized powdered and e-liquid materials. These derivatives included 2-(2-(1-(4-fluorobenzyl)-1H-indol-3-yl)acetamido)-3,3-dimethylbutanamide (AD-18), N'-(1-(5-fluoropentyl)-2-oxoindolin-3-ylidene)benzohydrazide (5F-MDA-19), and N'-(2-oxo-1-pentylindolin-3-ylidene)benzohydrazide (pentyl MDA-19). Identification was based on ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance spectroscopy (NMR), and Fourier transform infrared spectroscopy (FT-IR). AD-18 is a methylene analog of ADB-FUBICA. No chemical or pharmacological data about AD-18 and 5F-MDA-19 have appeared until now, making this the first report on these two compounds. Pentyl MDA-19 has previously been reported to have high affinity for cannabinoid CB1 and CB2 receptors, but this is the first report of its presence in the recreational drug market. Moreover, the collision-induced dissociation (CID) and electron ionization (EI) characteristic fragmentation routes of AD-18 and the other two MDA-19 derivatives were also discussed to facilitate forensic laboratories in their identification of other substances with a similar structure in their case work.


Subject(s)
Cannabinoids , Illicit Drugs , Cannabinoids/analysis , Gas Chromatography-Mass Spectrometry/methods , Illicit Drugs/analysis , Mass Spectrometry/methods , Spectroscopy, Fourier Transform Infrared/methods
11.
J Forensic Sci ; 66(6): 2156-2166, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34431514

ABSTRACT

Herbal blends containing synthetic cannabinoids have become popular alternatives to marijuana. The number of synthetic cannabinoids and speed of their emergence enable this group of compounds particularly challenging in terms of detection, monitoring, and responding. In this work, both gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR) methods were developed for the identification and quantification of synthetic cannabinoids in herbal blends. Ten types of indole/indazole carboxamide synthetic cannabinoids, which showed different types of substitutions connected to nitrogen of the indole/indazole carboxamide, were detected in 36 herbal blends. The GC-MS fragmentation routes of indole/indazole carboxamide synthetic cannabinoids were discussed in detail for structure identification purpose. The concentration range of synthetic cannabinoid in 36 herbal blends was 1.9-50.6 mg/g using GC-MS method, while 1.5-49.0 mg/g by NMR method. Nicotine in herbal blends was quantified by NMR method without using reference material, and showed a variation of 5.3-44.7 mg/g. For quantitative analysis, NMR method showed great advantage in the absence of reference material, while GC-MS method showed great merit for multiple-compound analysis when reference material was available. Therefore, for the quantitative analysis of new emerged synthetic cannabinoid in herbal blends, different methods could be chosen by considering whether reference material is available, as well as the number and types of synthetic cannabinoids detected in a single sample.


Subject(s)
Cannabinoids/chemistry , Indazoles/analysis , Indoles/analysis , Plant Preparations/chemistry , Synthetic Drugs/chemistry , Forensic Toxicology/methods , Gas Chromatography-Mass Spectrometry , Humans , Magnetic Resonance Spectroscopy
12.
J Forensic Sci ; 66(1): 365-374, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32986857

ABSTRACT

In this study, the Raman spectra of 21 phenethylamines were obtained using far-red excitation (785 nm). The distinguishing ability of Raman for phenethylamines, especially for phenethylamine regioisomers and structural analogues, was investigated. Here, the evaluation of a cross section of Raman spectra demonstrated that all types of phenethylamines were distinguishable, even for certain structural analogues with high spectrum similarity. Raman exhibited high distinguishing ability for phenethylamine regioisomers that differ in the substitution position of halogen, methoxy, alkyl, or other substituted groups; as well as for structural analogues containing different groups, such as furanyl, 2,3-dihydrofuranyl, halogen, and alkyl substituted at the same position. The Raman spectra for homologues with differences in only a methyl group were found to be highly similar; however, their spectra demonstrated small but detectable differences. Four analogue mixtures and 59 seized samples were also analyzed to study the practical use of the Raman method in forensic field. 95% of the seized samples were correctly identified, which significantly validated the ability of Raman method in identifying the correct isomers. Accordingly, this study provides a non-destructive, high-throughput and minimal sample preparation technique for the discrimination of phenethylamines.

13.
Drug Test Anal ; 13(3): 720-728, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33142047

ABSTRACT

Performing fast qualitative identification of seized illegal drugs by Raman spectroscopy is challenging due to fluorescence interference as well as chemical complexity. Spectrometers with 785-nm excitation, 1,064-nm excitation, and sequentially shifted excitation (SSE) were compared for their effect on fluorescence reduction. The characteristic peaks method, which is independent of cutting agents, was tested as a new strategy to broaden the application of the Raman technique. The suitability of the characteristic peaks method was fully examined by analyzing a large amount of seized illegal drugs, including 72 methamphetamine hydrochloride (concentration range of 13.9%-99.4%), 68 ketamine hydrochloride (17.7%-99.8%), 176 heroin hydrochloride (5.2%-79.5%), 51 cocaine hydrochloride (21.1%-94.5%), and 33 cocaine base (30.9%-92.5%) samples. The results showed that seized methamphetamine, ketamine, and cocaine samples had no or little fluorescence. Hence, in regard to detection of these samples, the advantage of using 1,064-nm excitation and SSE compared with 785-nm excitation was quite limited. Regarding the heroin samples, a significant improvement of the "high" confident positive detected rate was evident for 1,064 nm excitation (60.8%) and SSE (61.4%), compared with 785-nm excitation (13.1%). However, it was also seen that even if 1,064-nm excitation and SSE were applied, the fluorescence of heroin samples was still unable to be fully overcome. By using the characteristic peaks method, low LOD results of 5%-20% were acquired for 40 types of drug mixtures, and lower LODs were obtained for the 60% of the drug mixtures compared with library searching method. Raman spectroscopy in conjunction with the characteristic peaks method was shown to be fast, simple, accurate, and sensitive in the qualitative analysis of seized drug samples.


Subject(s)
Illicit Drugs/analysis , Spectrum Analysis, Raman/methods , Limit of Detection , Reproducibility of Results , Time Factors
14.
Forensic Sci Int ; 290: 162-168, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30053735

ABSTRACT

Rapid and nondestructive near infrared spectroscopy (NIR) methods have been developed for simultaneous qualitative and quantitative analysis of methamphetamine, ketamine, heroin, and cocaine in seized samples. This is the first systematic report regarding a qualitative and quantitative procedure of applying NIR for drug analysis. A total of 282 calibration samples and 836 prediction samples were used for the building and validating of qualitative and quantitative models. Two qualitative analysis modeling methods for soft independent modeling by class analogy (SIMCA) and supporting vector machine (SVM) were compared. From its excellent performance in rejecting false positive results, SIMCA was chosen. The drug concentrations in the calibration and validation sample sets were analyzed using high-performance liquid chromatography. Based on the use of first-order derivative spectral data after standard normal variate (SNV) transformation correction, in the wavelength range from 10,000 to 4000cm-1, four partial least squares quantitative-analysis models were built. The coefficients of determination for all calibration models were >99.3, and the RMSEC, RMSECV, and RMSEP were all less than 1.6, 2.9, and 3.6%, respectively. The results obtained here indicated that NIR with chemometric methods was accurate for qualitative and quantitative analysis of drug samples. This methodology provided a potentially useful alternative to time-consuming gas chromatography-mass spectroscopy and high-performance liquid chromatography methods.


Subject(s)
Cocaine/chemistry , Heroin/chemistry , Ketamine/chemistry , Methamphetamine/chemistry , Narcotics/chemistry , Chromatography, High Pressure Liquid , Forensic Toxicology/methods , Least-Squares Analysis , Principal Component Analysis , Spectroscopy, Near-Infrared
15.
Sci Total Environ ; 642: 505-515, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29908509

ABSTRACT

Cr6+ and Pb2+ are both highly toxic pollutants and commonly co-exist in some industrial effluents and contaminated waters. In this study, simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero-valent iron (SSB-nZVI) was systematically investigated. It was well demonstrated that a porous structure was successfully formed on the SSB-nZVI when the starch was used as an additive. A synergistic effect on the adsorption and reduction over the SSB-nZVI was achieved, resulting in nearly 90 and 82% of Cr6+ and Pb2+ removal within 30 min, respectively. Cr6+ was reduced prior to Pb2+. A low pH could accelerate the corrosion of nZVI as well as phosphate leaching. When Malachite green was added as a coexisting organic pollutant, its effective removal was found due to the formation of a Fenton-like system. The SSB-nZVI could be run consecutively three times with a relatively satisfactory performance. Most of Cr6+ was converted into Cr2O3 and Cr(OH)3 on the SSB-nZVI surface, whereas most of Pb2+ species existed as Pb(OH)2 (or PbO). A possible reaction mechanism on the SSB-nZVI involved the adsorption, reduction and precipitation of both Cr6+ and Pb2+ over the particles. Present study sheds light on the insight of the fate and transport of Cr6+ and Pb2+ in aquatic environment, as well provides helpful guide for the remediation of coexistence of pollutants in real applications.


Subject(s)
Chromium/analysis , Iron/analysis , Lead/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Charcoal , Chromium/chemistry , Iron/chemistry , Lead/chemistry , Sewage , Water Pollutants, Chemical/chemistry
16.
Environ Pollut ; 239: 698-705, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29715689

ABSTRACT

In this study, a novel biochar-supported zero valent iron (BC-nZVI) was synthesized through a green method. A high performance on the simultaneous removal of Cu2+ and bisphenol A (BPA) by a combination of BC-nZVI with persulfate (BC-nZVI/PS) system was successfully achieved. The simultaneous efficiencies of Cu2+ and BPA could reach 96 and 98% within 60 min, respectively. Both HO• and SO4•- were two major reactive species in BC-nZVI/PS system, and SO4•- was primary radical responsible for the degradation of BPA. Four kinds of Cu species, such as Cu(OH)2, CuO, Cu2O and Cu0 were generated via the adsorption and reduction of the BC-nZVI, whereas six kinds of products of BPA including p-isopropenyl phenol and 4-isopropylphenol were generated via the combined oxidation of SO4•- and HO•. The possible reaction mechanism for the simultaneous removal of Cu2+ and BPA by BC-nZVI/PS system contained a synergistic effect between the reduction of Cu2+ and the oxidation of BPA. This is the first report on the feasibility of the remediation of coexistence of heavy metal and organic compound in aquatic environment using the BC-nZVI/PS system.


Subject(s)
Benzhydryl Compounds/analysis , Charcoal/chemistry , Copper/analysis , Iron/chemistry , Phenols/analysis , Water Pollutants, Chemical/analysis , Adsorption , Benzhydryl Compounds/chemistry , Cations, Divalent , Copper/chemistry , Oxidation-Reduction , Phenols/chemistry , Water Pollutants, Chemical/chemistry
17.
World J Gastroenterol ; 23(16): 2978-2986, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28522916

ABSTRACT

AIM: To investigate whether hepatitis viral DNA load at 24 wk of treatment predicts response at 96 wk in patients with chronic hepatitis B. METHODS: A total of 172 hepatitis B envelope antigen (HBeAg)-positive chronic hepatitis B patients who received initial treatment at 16 tertiary hospitals in Hunan Province, China were enrolled in this study. All patients received conventional doses of lamivudine and adefovir dipivoxil, telbivudine, entecavir dispersible tablets, or entecavir tablets for 96 wk. Patients who used other antiviral drugs or antitumor and immune regulation therapy were excluded. Patients were stratified into three groups according to their viral DNA load at 24 wk: < 10 IU/mL (group 1), 10-103 IU/mL (group 2), and > 103 IU/mL (group 3). Correlations of 24-wk DNA load with HBeAg negative status and HBeAg seroconversion at 96 wk were analyzed. Receiver operating characteristic curve analysis was used to test the predictive value of the HBV DNA load at 24 wk for long-term response. RESULTS: The rates of conversion to HBeAg negative status and HBeAg seroconversion rates were 53.7% and 51.9%, respectively, in group 1; 35.21% and 32.39% in group 2; and 6.38% and 6.38% in group 3. The receiver operating characteristic curves for the three subgroups revealed that the lowest DNA load (< 10 IU/mL) was better correlated with response at 96 wk than a higher DNA load (10-103 IU/mL). Nested PCR was used for amplifying and sequencing viral DNA in patients with a viral DNA load > 200 IU/mL at 96 wk; resistance mutations involving different loci were present in 26 patients, and three of these patients had a viral DNA load 10-103 IU/mL at 96 wk. CONCLUSION: Hepatitis B viral DNA load at 24 wk of antiviral treatment in patients with chronic hepatitis B is a predictor of the viral load and response rate at 96 wk.


Subject(s)
Antiviral Agents/therapeutic use , DNA, Viral/blood , Hepatitis B virus/drug effects , Hepatitis B, Chronic/drug therapy , Adenine/analogs & derivatives , Adenine/therapeutic use , Adult , Antiviral Agents/adverse effects , Area Under Curve , China , Female , Guanine/analogs & derivatives , Guanine/therapeutic use , Hepatitis B e Antigens/blood , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/diagnosis , Humans , Lamivudine/therapeutic use , Male , Middle Aged , Organophosphonates/therapeutic use , Predictive Value of Tests , Prospective Studies , ROC Curve , Telbivudine , Thymidine/analogs & derivatives , Thymidine/therapeutic use , Time Factors , Treatment Outcome , Viral Load
18.
Beijing Da Xue Xue Bao Yi Xue Ban ; 47(1): 109-12, 2015 Feb 18.
Article in Chinese | MEDLINE | ID: mdl-25686339

ABSTRACT

OBJECTIVE: To evaluate the prophylactic application of antibiotics in oral and maxillofacial surgery and to provide a scientific basis for its reasonable use. METHODS: The use of prophylactic antibiotics in the oral and maxillofacial surgery was conducted in our hospital from January 2011 to August 2013 based on a retrospective survey, and the conditions and affecting factors were analyzed. RESULTS: The utilization rates of prophylactic antibiotics were respectively 98.9%, 61.8%, and 24.6%, showing a downward trend. But the infection rate of surgical site did not significantly increase, and by Fisher's exact test, the difference was not significant (P>0.05). Surgical site infections (SSI) rates did not rise between using and not using prophylactic antibiotics (P>0.05). CONCLUSION: The use of prophylactic antibiotics is greatly influenced by the policy, and along with the decline in antibiotic usage, SSI have not increased significantly.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/statistics & numerical data , Oral Surgical Procedures , Surgical Wound Infection/prevention & control , Humans , Retrospective Studies
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(9): 2173-6, 2008 Sep.
Article in Chinese | MEDLINE | ID: mdl-19093587

ABSTRACT

The Se in the blood and tissue of animal samples was determined by ICP-MS instrument. The method was not only proved simple and rapid, but also showed satisfying precision and low detection limit. The optimum conditions of ICP-MS for the method were investigated. Results by the digestion method, the isotopes selection, and the difference between the normal ICP-MS without ORS (Octopole Reaction System) and the ICP-MS with ORS were compared, which afford reference to the determination of the same kinds of sample. The standard materials were determined to proved the reliability of the normal ICP-MS and the ORS-ICP-MS methods. The ORS-ICP-MS can effectively remove the interference based on polyatomic ions, so the the detection limits were lowed, and the accuracy was improved. The detection limits of the method for normal ICP-MS is 0.024 ng x g(-1) and that for ORS-ICP-MS is 0.004 6 ng x g(-1), the RSDs are between 1.8% and 5.5%, and the recoveries of the method are in the range of 90.8%-107.2%.


Subject(s)
Selenium/blood , Selenium/metabolism , Spectrometry, Mass, Electrospray Ionization , Animals , Guinea Pigs , Metals, Heavy/blood , Metals, Heavy/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL