Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Shock ; 62(1): 85-94, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661181

ABSTRACT

ABSTRACT: Background: Cerebral ischemia-reperfusion (I/R) injury (CIRI) have severe consequences on brain function, and the exciting evidence has revealed protective role of acyl-CoA synthetase long chain family member 4 (Lin28a) against cerebral ischemia-reperfusion injury. The present work aims to reveal its molecular mechanism in regulating CIRI, with the hope of providing a therapeutic method for cerebral I/R injury. We hypothesized that the exosomal nuclear factor erythroid 2-related factor 2 (NRF2) derived from bone marrow mesenchymal stromal cells could transcriptionally activate Lin28a and thereby alleviate cerebral ischemia-reperfusion injury. This hypothesis was validated in the present work. Methods: Middle cerebral artery occlusion (MCAO) model was established using C57BL/6J mice, and the neurological deficit, infarct volume, and brain water content were assessed to evaluate neuron injury. Human glioblastoma cells (A172) were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) treatment to mimic a cerebral I/R injury cell model. Exosome isolation reagent was used to isolate exosomes from cell supernatant of bone marrow mesenchymal stromal cells through sequential centrifugation and filtration steps. mRNA expression level of Lin28a was detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blotting assay. TUNEL cell apoptosis detection kit was used to analyze cell apoptosis in brain tissues. Enzyme-linked immunosorbent assays and commercial kits were used to detect levels of inflammatory markers and oxidative stress markers. Ferrous Iron Colorimetric Assay Kit and Fe 2+ colorimetric assay kit were used to analyze Fe 2+ level. The association of Lin28a and NRF2 was identified by chromatin immunoprecipitation assay and dual-luciferase reporter assay. Results: The treatment of MCAO substantially augmented infarct volume in mice, impaired neurological function, and elevated brain water content. Lin28a was lowly expressed in brain tissues of mice with CIRI, and its overexpression protected against cerebral I/R injury of MCAO mice. Moreover, Lin28a overexpression protected A172 cells against OGD/R treatment-induced injury. Additionally, NRF2 transcriptionally activated Lin28a in A172 cells. Bone marrow mesenchymal stromal cell-derived exosomes increased Lin28a expression in a NRF2-dependent manner. Bone marrow mesenchymal stromal cell-derived exosomal NRF2 improved OGD/R-induced A172 cell injury by inducing Lin28a production. Conclusion: Bone marrow mesenchymal stromal cell-derived exosomal NRF2 improved CIRI by transcriptionally activating Lin28a.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Mice, Inbred C57BL , NF-E2-Related Factor 2 , RNA-Binding Proteins , Reperfusion Injury , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mesenchymal Stem Cells/metabolism , Mice , Reperfusion Injury/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Exosomes/metabolism , Male , Humans , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/metabolism
2.
J Ethnopharmacol ; 323: 117709, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38181931

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shangkehuangshui (SK) has been traditionally used to treat traumatic injury, soft tissue and bone injury in Foshan hospital of traditional Chinese medicine for more than 60 years, which composed of many Chinese herbs such as Coptis chinensis Franch., Gardenia jasminoides Ellis, Phellodendron chinense Schneid. and etc. SK exhibits heat-clearing and detoxifying, enhancing blood circulation to eliminate blood stasis properties, and demonstrates noteworthy clinical efficacy. Nevertheless, the underlying mechanism remains uncertain. AIM OF THE STUDY: The early study found that SK had good anti-inflammatory effects in acute soft tissue injury model. This research is to verify the anti-inflammatory properties of SK both in vitro and in vivo via TLR4/TLR2-NF-κB signaling pathway, to clarify the underlying mechanisms responsible for the curative effect of SK. METHODS: The RAW264.7 cells inflammatory model was established with lipopolysaccharide (LPS) in vitro. NO and TNF-α, IL-6, IL-1ß were determined with Griess method and ELISA method respectively. The mRNA and protein expression levels of TLR4/TLR2-NF-κB pathway were evaluated by qPCR and Western blot method. In vivo experiment, chronic soft tissue injury rat models were established by tracking gastrocnemius muscle with electrical stimulation, then local appearance and pathological changes were observed and recorded, the contents of inflammatory factors in serum and tissue were performed. Moreover, we also measured and contrasted the expression of TLR4/TLR2-NF-κB related factors. RESULTS: SK effectively inhibited the LPS-induced generation of inflammatory cytokines, including NO, TNF-α, IL-6 and IL-1ß in RAW264.7 cells, and significantly suppressed the expression of TLR4, TLR2, MyD88, IκB, and NF-κB. In vivo, SK remarkably decreased the damage appearance scores after 4 and 14 days of administration and inhibit the quantity of NO and leukocytes present in the serum. Additionally, the inflammatory infiltration in the pathological section was alleviated, myofibrillar hyperplasia and blood stasis were reduced. SK markedly downregulated NO, TNF-α, IL-6 and IL-1ß in injured tissues of rats, also declined the expression of TLR4, TLR2, MyD88, IκB, NF-κB, IL-6, TNF-α and IL-1ß. CONCLUSION: This study revealed that SK had obvious effects of anti-inflammatory actions in vivo and vitro, effectively reduced acute and chronic soft tissue injury in clinical, this might be attributed to inhibit the TLR4/TLR2-NF-κB pathway, further inhibit the expression of downstream relevant pro-inflammatory cytokines.


Subject(s)
NF-kappa B , Soft Tissue Injuries , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Myeloid Differentiation Factor 88/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Soft Tissue Injuries/drug therapy
3.
Adv Biol (Weinh) ; 8(2): e2300453, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37957539

ABSTRACT

Accumulating evidence indicates that cellular premature senescence of the glomerulus, including endothelial cells, mesangial cells, and podocytes leads to diabetic nephropathy (DN), and DN is regarded as a clinical model of premature senescence. However, the role of cellular senescence-associated genes in the glomerulus in DN progression remains unclear. Therefore, this work aims to identify and validate potential cellular aging-related genes in the glomerulus in DN to provide novel clues for DN treatment based on anti-aging. The microarray GSE96804 dataset, including 41 diabetic glomeruli and 20 control glomeruli, is retrieved from the Gene Expression Omnibus (GEO) database and cellular senescence-related genes (CSRGs) are obtained from the GeneCards database and literature reports. Subsequently, PPI, GO, and KEGG enrichment are analyzed by screening the intersection between differentially expressed genes (DEGs) and CSRGs. scRNA-seq dataset GSE127235 is used to verify core genes expression in glomerulocytes of mice. Finally, db/db mice are utilized to validate the hub gene expression in the glomeruli, and high glucose-induced mesangial cells are used to confirm key gene expression. This study reveals that FOS and ZFP36 may play an anti-aging role in DN to ameliorate cell intracellular premature aging in mesangial cells of glomeruli.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Multiomics , Endothelial Cells/metabolism , Kidney Glomerulus/metabolism , Mice, Inbred Strains , Cellular Senescence/genetics , Diabetes Mellitus/metabolism
4.
AAPS PharmSciTech ; 24(7): 187, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700066

ABSTRACT

By selecting L-arginine as the hydrogen bond acceptor (HBA) and 2-hydroxypropyl-ß-cyclodextrin (2HPßCD) as the hydrogen bond donor (HBD), deep eutectic solvents (DESs) with various water content were prepared at the 4:1 mass ratio of L-arginine to 2HPßCD with 40 to 60% of water, and were studied for its application in transdermal drug delivery system (TDDS). The hydrogen bond networks and internal chemistry structures of the DESs were measured by attenuated total reflection Fourier transform infrared (ATR-FTIR) and 1H-nuclear magnetic resonance spectroscopy (1H-NMR), which demonstrated the successful synthesis of DESs. The viscosity of DES was decreased from 10,324.9 to 3219.6 mPa s, while glass transition temperature (Tg) of the DESs was increased from - 60.8 to - 51.4 °C, as the added water was increased from 45 to 60%. The solubility of ibuprofen, norfloxacin, and nateglinide in DES with 45% of water were increased by 79.3, 44.1, and 3.2 times higher than that in water, respectively. The vitro study of transdermal absorption of lidocaine in DESs showed that the cumulative amounts of lidocaine reached 252.4 µg/cm2, 226.1 µg/cm2, and 286.1 µg/cm2 at 8 h for DESs with 45%, 50%, and 60% of water, respectively. The permeation mechanism of DES with lower content of water (45%) was mainly by changing the fluidization of lipids, while changing the secondary structure of keratin in stratum corneum (SC) at higher water content (50% and 60%). These nonirritant and viscous fluid like DESs with good drug solubility and permeation enhancing effects have broad application prospect in the field of drug solubilization and transdermal drug delivery system.


Subject(s)
Deep Eutectic Solvents , Drug Carriers , 2-Hydroxypropyl-beta-cyclodextrin , Arginine , Lidocaine
5.
Biomolecules ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36358986

ABSTRACT

Researchers have made crucial advances in understanding the pathogenesis and therapeutics of non-small cell lung cancer (NSCLC), improving our understanding of lung tumor biology and progression. Although the survival of NSCLC patients has improved due to chemoradiotherapy, targeted therapy, and immunotherapy, overall NSCLC recovery and survival rates remain low. Thus, there is an urgent need for the continued development of novel NSCLC drugs or combination therapies with less toxicity. Although the anticancer effectiveness of curcumin (Cur) and some Cur analogs has been reported in many studies, the results of clinical trials have been inconsistent. Therefore, in this review, we collected the latest related reports about the anti-NSCLC mechanisms of Cur, its analogs, and Cur in combination with other chemotherapeutic agents via the Pubmed database (accessed on 18 June 2022). Furthermore, we speculated on the interplay of Cur and various molecular targets relevant to NSCLC with discovery studio and collected clinical trials of Cur against NSCLC to clarify the role of Cur and its analogs in NSCLC treatment. Despite their challenges, Cur/Cur analogs may serve as promising therapeutic agents or adjuvants for lung carcinoma treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Curcumin , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Curcumin/pharmacology , Curcumin/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Motivation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
6.
Article in English | MEDLINE | ID: mdl-35222679

ABSTRACT

BACKGROUND: Skin and soft tissue infections (SSTIs) are a group of common diseases, usually caused by bacteria. Shangke Huangshui (SK) has been widely used to treat various SSTIs diseases for many years, but its mechanism is unclear. Therefore, this study was designed to investigate the anti-infective effect of SK on different skin and soft tissue infection diseases and to explore its underlying mechanism. METHODS: The subcutaneous abscess mouse model, the dermal ulcer rat model, and the infectious soft tissue injury rat model were established by injection of Staphylococcus aureus to evaluate the anti-inflammatory and antibacterial effects of SK. Abscess volume, local appearance score and histological changes, bacterial contents, and hydroxyproline concentration in the skin or soft tissue were analyzed. The levels of NO, TNF-α, IL-1ß, and IL-8 in the serum and tissue were determined by ELISA method. The mRNA expression levels of TLR2, MyD88, TAK1, NF-κB, AP-1, and other genes were measured with qRT-PCR method, and the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1 was detected by western blot method. RESULTS: SK had an obvious therapeutic effect on skin and soft tissue infections. It reduced the volume of abscess and promoted the healing of skin ulcer, improved pathological phenomena, such as inflammatory infiltration of skin and soft tissue, reduced the levels of white blood cells and NO in the blood, decreased bacteria contents in the skin and soft tissue. Furthermore, SK decreased the mRNA expression of TLR2, MyD88, TAK1, NF-κB and AP-1, and other related genes and also downregulated the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1. CONCLUSION: The experiments provide evidence that SK can treat skin and soft tissue infection diseases based on its comprehensive antibacterial and anti-inflammatory effects. The therapeutic mechanism may be associated with the inhibition of TLR2/MyD88/NF-κB signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL