Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2301, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485746

ABSTRACT

Atomically precise defect engineering is essential to manipulate the properties of emerging topological quantum materials for practical quantum applications. However, this remains challenging due to the obstacles in modifying the typically complex crystal lattice with atomic precision. Here, we report the atomically precise engineering of the vacancy-localized spin-orbit polarons in a kagome magnetic Weyl semimetal Co3Sn2S2, using scanning tunneling microscope. We achieve the step-by-step repair of the selected vacancies, leading to the formation of artificial sulfur vacancies with elaborate geometry. We find that that the bound states localized around these vacancies undergo a symmetry dependent energy shift towards Fermi level with increasing vacancy size. As the vacancy size increases, the localized magnetic moments of spin-orbit polarons become tunable and eventually become itinerantly negative due to spin-orbit coupling in the kagome flat band. These findings provide a platform for engineering atomic quantum states in topological quantum materials at the atomic scale.

2.
Sci Total Environ ; 926: 172082, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554958

ABSTRACT

Two main challenges which human society faces for sustainable development goals are the maintenance of food security and mitigation of greenhouse gas (GHG) emissions. Here, we examined the impacts of six fertilization treatments including unfertilized control (CK), mineral nitrogen (N, 90 kg N ha-1), mineral N plus 30 kg P ha-1 phosphorus (NP), NP combined with 3.75 Mg ha-1 straw (NP + Str), farmyard manure (Man, 75 Mg ha-1), and NP combined with manure (NP + Man) on crop productivity and carbon emissions (soil GHG emission; GHGI, yield-based GHG intensity; NGHGB, net GHG balance; carbon footprint, CF) in a maize-wheat cropping system during two years (April 2018-June 2020) in a semi-arid continental climate after 40 years of fertilization in the Northwest China. Manure and straw increased total GHG by 38-60 % compared to the mineral fertilizers alone, which was mainly due to the 49-80 % higher direct emissions of carbon dioxide (CO2) rather than nitrous oxide (N2O). Compared to the N fertilizer alone, organic amendments and NP increased cumulative energy yield by 134-202 % but decreased GHGI by 38-55 %, indicating that organic fertilizers increased crop productivity at the cost of higher GHG emissions. When the soil organic carbon changes (ΔSOC) were accounted for in the C emission balance, manure application acted as a net C sink due to the NGHGB recorded with -123 kg CO2-eq ha-1 year-1. When producing the same yield and economic benefits, the manure and straw addition decreased the CF by 59-85 % compared to N fertilization alone. Overall, the transition from mineral to organic fertilization in the semi-arid regions is a two-way independent solution to increase agricultural productivity along with the reduction of C emissions.


Subject(s)
Greenhouse Gases , Soil , Humans , Carbon Footprint , Zea mays , Triticum , Fertilizers , Manure , Carbon Dioxide/analysis , Carbon , Agriculture , Minerals , China , Nitrous Oxide/analysis , Fertilization
3.
Water Res ; 250: 121052, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171174

ABSTRACT

Atmospheric water harvesting (AWH) technology is an emerging sustainable development strategy to deal with global water scarcity. To better understand the current state of AWH technology development, we conducted a bibliometric analysis highlighting three water harvesting technologies (fog harvesting, condensation, and sorption). By comprehensively reviewing the research progress and performing a comparative assessment of these technologies, we summarized past achievements and critically analyzed the different technologies. Traditional fog collectors are more mature, but their efficiency still needs to be improved. External field-driven fog harvesting and active condensation need to be driven by external forces, and passive condensation has high requirements for environmental humidity. Emerging bio-inspired fog harvesting and sorption technology provide new possibilities for atmospheric water collection, but they have high requirements for materials, and their commercial application is still to be further promoted. Based on the key characteristics of each technology, we presented the development prospects for the joint use of integrated/hybrid systems. Next, the water-energy relationship is used as a link to clarify the future development strategy of AWH technology in energy driving and conversion. Finally, we outlined the core ideas of AWH for both basic research and practical applications and described its limitless possibilities for drinking water supply and agricultural irrigation. This review provides an essential reference for the development and practical application of AWH technologies, which contribute to the sustainable utilization of water resources globally.


Subject(s)
Agricultural Irrigation , Sustainable Development , Technology , Water , Water Resources
4.
Sci Total Environ ; 905: 167290, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742948

ABSTRACT

Using biochar in agriculture to enhance soil carbon storage and productivity has been recognized as an effective means of carbon sequestration. However, the effects on crop yield and soil carbon and nitrogen can vary depending on environmental conditions, field management, and biochar conditions. Thus, we conducted a meta-analysis to identify the factors contributing to these inconsistencies. We found that biochar application significantly increased soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), easily oxidized carbon (EOC), particulate organic carbon (POC), total nitrogen (TN), and the C:N ratio in topsoil (0-20 cm) and crop yields. Biochar was most effective in tropical regions, increasing SOC, Soil TN, and crop yield the most, with relatively moderate pyrolysis temperatures (550-650 °C) more conducive to SOC accumulation and relatively low pyrolysis temperatures (<350 °C) more conducive to increasing soil carbon components and crop yields. Biochar made from manure effectively increased soil carbon components and TN. Soil with low fertility (original SOC < 5 g kg-1; original TN < 0.6 g kg-1), coarse texture, and acidity (pH < 5.5) showed more effective results. However, biochar application rates should not be too high and should be combined with appropriate nitrogen fertilizer. And biochar application had long-term positive effects on soil carbon storage and crop yield. Overall, we recommend using small amounts of biochar with lower pyrolysis temperatures in soils with low fertility, coarse texture, and tropical regions for optimal economic and environmental benefits.


Subject(s)
Carbon , Soil , Charcoal/pharmacology , Agriculture/methods , Fertilizers , Nitrogen/analysis
5.
Nat Commun ; 14(1): 5230, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37634043

ABSTRACT

Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.

6.
Front Plant Sci ; 14: 1198366, 2023.
Article in English | MEDLINE | ID: mdl-37360729

ABSTRACT

The ridge-furrow rainfall harvesting system (RFRH) improved the water shortages, and reasonable fertilization can promote nutrient uptake and utilization of crops, leading to better yield in semi-arid regions. This holds significant practical significance for improving fertilization strategies and reducing the application of chemical fertilizers in semi-arid areas. This field study was conducted to investigate the effects of different fertilization rates on maize growth, fertilizer use efficiency, and grain yield under the ridge-furrow rainfall harvesting system during 2013-2016 in semiarid region of China. Therefore, a four-year localization field experiment was conducted with four fertilizer treatments: RN (N 0 kg hm-2, P2O5 0 kg hm-2), RL (N 150 kg hm-2, P2O5 75 kg hm-2), RM (N 300 kg hm-2, P2O5 150 kg hm-2), and RH (N 450 kg hm-2, P2O5 225 kg hm-2). The results showed that the total dry matter accumulation of maize increased with the fertilizer application rate. The nitrogen accumulation was highest under the RM treatment after harvest, average increase by 1.41% and 22.02% (P<0.05) compared to the RH and RL, respectively, whereas the phosphorus accumulation was increased with the fertilizer application rate. The nitrogen and phosphorus use efficiency both decreased gradually with the fertilization rate increased, where the maximum efficiency was observed under the RL. With the increase of fertilizer application rate, the maize grain yield initially increased and then decreased. Under linear fitting, the grain yield, biomass yield, hundred-kernel weight, and ear-grain number all showed a parabolic trend with the increase of fertilization rate. Based on comprehensive consideration, the recommended moderate fertilization rate (N 300 kg hm-2, P2O5 150 kg hm-2) is suitable for the ridge furrow rainfall harvesting system in semiarid region, and the fertilization rate can be appropriately reduced according to the rainfall.

7.
Innovation (Camb) ; 4(2): 100399, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36923023

ABSTRACT

The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics. Schemes to achieve this have been proposed theoretically, but few can be realized experimentally. Here, combining transverse transport, theoretical calculations, and scanning tunneling microscopy/spectroscopy (STM/S) investigations, we provide an observation that the topological electronic state, accompanied by an emergent magneto-transport phenomenon, was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6. A giant unconventional anomalous Hall effect (UAHE) is found during the magnetization re-orientation from easy axes to hard ones in magnetic field, with a UAHE peak around the low field of 5 kOe. Under the reasonable spin-canting effect, the folding of the topological anti-crossing bands occurs, generating a strong Berry curvature that accounts for the observed UAHE. Field-dependent STM/S reveals a highly synchronous evolution of electronic density of states, with a dI/dV peak around the same field of 5 kOe, which provides evidence to the folded bands and excited UAHE by external magnetic fields. This finding elucidates the connection between the real-space non-collinear magnetism and the k-space topological electronic state and establishes a novel manner to engineer the magneto-transport behaviors of correlated electrons for future topological spintronics.

8.
Adv Mater ; 35(17): e2209759, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36795948

ABSTRACT

Exchange bias (EB) is highly desirable for widespread technologies. Generally, conventional exchange-bias heterojunctions require excessively large cooling fields for sufficient bias fields, which are generated by pinned spins at the interface of ferromagnetic and antiferromagnetic layers. It is crucial for applicability to obtain considerable exchange-bias fields with minimum cooling fields. Here, an exchange-bias-like effect is reported in a double perovskite, Y2 NiIrO6 , which shows long-range ferrimagnetic ordering below 192 K. It displays a giant bias-like field of 1.1 T with a cooling field of only 15 Oe at 5 K. This robust phenomenon appears below 170 K. This fascinating bias-like effect is the secondary effect of the vertical shifts of the magnetic loops, which is attributed to the pinned magnetic domains due to the combination of strong spin-orbit coupling on Ir, and antiferromagnetically coupled Ni- and Ir-sublattices. The pinned moments in Y2 NiIrO6 are present throughout the full volume, not just at the interface as in conventional bilayer systems.

9.
Front Plant Sci ; 13: 1035038, 2022.
Article in English | MEDLINE | ID: mdl-36531356

ABSTRACT

To clarify the differences in growth and yield responses to drought stress among genotypes contrasting in environmental background, dryland and irrigated genotypes, as well as the underlying biochemical mechanism would provide valuable information for developing superior dryland cultivars. Pot experiments for the whole life cycle in fifteen genotypes and comparative metabolomics analysis for seedlings between two drought tolerant (DT) dryland genotypes and two drought sensitive (DS) irrigated ones were carried out. The DT dryland genotypes suffered heavy biomass loss during severer drought but showed minor yield loss ultimately, while the DS irrigated ones showed minor biomass loss but greater yield loss. Additionally, the superior DT dryland genotypes showed better yield performance under both drought stress and well-watered conditions, indicating their possessing both drought tolerance and high yield potential traits. Suffering severer drought stress, seedling leaves of the DS irrigated genotypes increased some amino acids and organic acids to maintain cell metabolism and accumulate more biomass. Proline in particular was overproduced, which might cause toxicity to cell systems and lead to enormous yield loss ultimately. In contrast, DT dryland genotypes increased the beneficial amino acid and phenolic acids to enhance cell self-protection for alleviating drought damage and efficiently minimized yield loss ultimately.

10.
Proc Natl Acad Sci U S A ; 119(45): e2208505119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36322772

ABSTRACT

The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet, and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 K and 9 T, among known magnetic topological semimetals. In this system, masses of Weyl nodes existing near the Fermi level, revealed by theoretical calculations, serve as Berry-curvature monopoles and low-effective-mass carriers. Based on the Weyl picture, we propose a relation [Formula: see text], with B being the applied magnetic field and [Formula: see text] the average Berry curvature near the Fermi surface, and further introduce temperature factor to both MR/B slope (MR per unit field) and anomalous Hall conductivity, which establishes the connection between the model and experimental measurements. A clear picture of the linearly slowing down of carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the k-space Berry curvature and real-space magnetic field. Our study not only provides experimental evidence of Berry curvature-induced LPMR but also promotes the common understanding and functional designing of the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic sensing or information storage.

11.
Plants (Basel) ; 11(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145744

ABSTRACT

As plastic mulching is widely used for maize production on Loess Plateau, study of the fate of fertilizer nitrogen (N) in rain-fed croplands is of great significance. Field experiments were conducted during 2015-2016 at a typical dry-land farm on the Loess Plateau, China. The stable isotope tracer technique was applied to analyze the effects of plastic mulching on the maize crop yield, N content in the grain, and mechanism of N uptake and utilization in maize plants with plastic mulch (PM) and without plastic mulch (CK) on the Loess Plateau. Maize yield, aboveground dry matter, grain N concentration, and N uptake in aboveground biomass for PM significantly increased, in addition to fertilizer nitrogen recovery and nitrogen production efficiency. Compared to CK, PM improved the total N uptake from the soil in the aboveground biomass by 16.39 and 27.75 kg ha-1 and fertilizer nitrogen recovery by 10.89 and 22.02 kg ha-1, respectively. Furthermore, PM increased in-season fertilizer N retention in the soil by 11.9-24.8 kg ha-1, and the uncountable fertilizer N decreased by approximately 33.8 kg ha-1 on average. In conclusion, PM simultaneously improved the maize yield and N utilization, which provides a scientific basis for nitrogen management in maize croplands.

12.
Phys Rev Lett ; 129(5): 056601, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35960574

ABSTRACT

Tilting the Weyl cone breaks the Lorentz invariance and enriches the Weyl physics. Here, we report the observation of a magnetic-field-antisymmetric Seebeck effect in a tilted Weyl semimetal, Co_{3}Sn_{2}S_{2}. Moreover, it is found that the Seebeck effect and the Nernst effect are antisymmetric in both the in-plane magnetic field and the magnetization. We attribute these exotic effects to the one-dimensional chiral anomaly and phase space correction due to the Berry curvature. The observation is further reproduced by a theoretical calculation, taking into account the orbital magnetization.

13.
Plants (Basel) ; 11(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807660

ABSTRACT

This 2-year field study analyzed plastic film mulching (PFM) effects on nitrogen use efficiency (NUE), and soil N pools under rainfed dryland conditions. Compared to no-mulching (NM, control), maize yields under PFM were increased by 36.3% (2515.7 kg ha−1) and 23.9% (1656.1 kg ha−1) in the 2020 and 2021 growing seasons, respectively. The PFM improved (p < 0.01) the water use efficiency (WUE) of maize by 39.6% and 33.8% in the 2020 and 2021 growing seasons, respectively. The 2-year average NUE of maize under the PFM was 40.1, which was 30.1% greater than the NM. The average soil total N, particulate organic N, and microbial biomass N contents under the PFM soil profile were increased by 22.3%, 51.9%, and 35%, respectively, over the two growing seasons. The residual 15N content (%TN) in soil total N pool was significantly higher (p < 0.05) under the PFM treatment. Our results suggest that PFM could increase maize productivity and sustainability of rainfed dryland faming systems by improving WUE, NUE, and soil N pools.

14.
Plants (Basel) ; 11(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807699

ABSTRACT

Soil extracellular enzymes are pivotal for microbial nutrient cycling in the ecosystem. In order to study the effects of different nitrogen application rates under plastic film mulching on soil extracellular enzyme activities and stoichiometry, five nitrogen application levels (i.e., 0, 90, 150, 225 and 300 kg·hm-2) were set based on two treatments: plastic film mulching (PM) and no film mulching (LD). We measured the soil extracellular enzyme activities (EEAs) and stoichiometry (EES) of four enzymes (i.e., ß-1,4-glucosidase (ßG), leucine aminopeptidase (LAP), ß-1,4-N-acetylaminoglucosidase (NAG) and alkaline phosphatase (AP)) involved in the C, N and P cycles of soil microorganisms in surface soil at five maize growth stages (seedling stage, jointing stage, trumpet stage, grout stage and harvest stage). The results showed that there were significant differences in soil EEA at different maize growth stages. The soil nutrient content and soil EEA were significantly improved under PM, and the stoichiometric ratio of extracellular enzymes (EC:N:P) was closer to 1:1:1, which indicated that PM was beneficial to the balance of soil nutrients and the activity of microorganisms. At each stage, with the increase in nitrogen application levels, the soil EEA showed a trend of increasing first and then decreasing (or remained unchanged), and both LD and PM treatments reached their highest activity at the 225 kg·hm-2 nitrogen application rate. When the nitrogen application level was less than 225 kg·hm-2, the soil enzyme activity was mainly limited by the N nutrient, and when the nitrogen application level reached 300 kg·hm-2, it was mainly limited by the P nutrient. RDA and correlation analysis showed that the soil C:P, C:N, N:P and pH had significant effects on soil ßG, NAG + LAP and AP activities as well as EC:N, EC:P and EN:P.

15.
Nanoscale ; 14(28): 10067-10074, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35791918

ABSTRACT

Band structure engineering has a strong beneficial impact on thermoelectric performance, where theoretical methods dominate the investigation of electronic structures. Here, we use angle-resolved photoemission spectroscopy (ARPES) to analyze the electronic structure and report on the thermoelectric transport properties of half-Heusler TiCoSb high-quality single crystals. High degeneracy of the valence bands at the L and Γ band maximum points was observed, which provides a band-convergence scenario for the thermoelectric performance of TiCoSb. Previous efforts have shown how crystallographic defects play an important role in TiCoSb transport properties, while the intrinsic properties remain elusive. Using hard X-ray photoelectron spectroscopy (HAXPES), we discard the presence of interstitial defects that could induce in-gap states near the valence band in our crystals. Contrary to polycrystalline reports, intrinsic TiCoSb exhibits p-type transport, albeit defects still affect the carrier concentration. In two initially identical p-type TiCoSb crystal batches, distinct metallic and semiconductive behaviors were found owing to defects not noticeable by elemental analysis. A varying Seebeck effective mass is consistent with the change at the Fermi level within this band convergence picture. This report tackles the direct investigation of the electronic structure of TiCoSb and reveals new insights and the strong impact of point defects on the optimization of thermoelectric properties.

16.
Sci Total Environ ; 814: 152572, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34954175

ABSTRACT

Upon environmental weathering, plastic materials form smaller sized microplastics, of which the contamination in agricultural fields is of significant importance and increasing social concern. Plastic mulch films are considered a major source of agricultural soil microplastic pollution. However, the mechanism and kinetics of microplastic formation from plastic mulch films were rarely understood. In this study, the rate of microplastic generation from typical mulch films, such as oxodegradable, biodegradable, and conventional non-degradable (polyethylene, PE) mulch films, were quantified in soil under simulated UV irradiation. Results showed that microplastic formation was more rapid from biodegradable mulch film, followed sequentially by oxodegradable mulch film, white PE mulch film, and black PE mulch film. The kinetics of microplastic generation strictly followed the Schwarzchild's law, with exponential growth at indexes between 1.6309 and 2.0502 in the microplastic generation model. At a cumulative UV irradiation of 2.1 MJ/m2, the average quantity of microplastics released from biodegradable, oxodegradable, and white and black non-degradable mulch films were 475, 266, 163, 147 particles/cm2, respectively; with particle sizes largely distributed within 0.02-0.10 mm range. Concurrent increase in crystallinity and surface erosion of the mulch films were observed upon UV irradiation, which further determined the accessibility and activity of the materials to photo-oxidation (reflected as HI indexes), therefore played a critical role on the quantity and size ranges of microplastic debris.


Subject(s)
Microplastics , Soil , Agriculture , Kinetics , Plastics
17.
Article in English | MEDLINE | ID: mdl-34886574

ABSTRACT

The impact of chemical to organic fertilizer substitution on soil labile organic and stabilized N pools under intensive farming systems is unclear. Therefore, we analyzed the distribution of soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), dissolved organic N (DON), and mineral N (NO3- and NH4+) levels down to 100 cm profile under wheat-maize rotation system in northern China. The experiment was established with four 270 kg ha-1 N equivalent fertilizer treatments: Organic manure (OM); Organic manure with nitrogen fertilizer (OM + NF); Nitrogen fertilizer (NF); and Control (CK). Results found that the OM and OM + NF treatments had significantly higher STN, PON, MBN, DON, and NO3- contents in 0-20 cm topsoil depths. Conversely, the NF treatment resulted in the highest (p < 0.01) DON and NO3- depositions in 40-100 cm subsoil depths. The NH4+ contents in selected profile depths were significantly highest (p < 0.01) under OM treatment. The correlations between STN and its fractions were positively significant at 0-10 and 10-20 cm topsoil depths. Our results suggest that partial substitution of chemical fertilizer with organic manure could be a sustainable option for soil N management of intensive farming systems.


Subject(s)
Fertilizers , Soil , Agriculture , Carbon/analysis , China , Fertilizers/analysis , Manure , Nitrogen/analysis
18.
Innovation (Camb) ; 2(4): 100179, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34877560

ABSTRACT

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.

19.
PLoS One ; 16(11): e0251389, 2021.
Article in English | MEDLINE | ID: mdl-34793480

ABSTRACT

Glycinebetaine (GB) is an osmoprotectant found in plants under environmental stresses that incorporates drought and is associated with drought tolerance in several plants, such as the woody pear. However, how GB improves drought tolerance in pears remains unclear. In the current study, we explored the mechanism by which GB enhances drought tolerance of whole pear plants (Pyrus bretschneideri Redh. cv. Suli) supplied with exogenous GB. The results showed that on the sixth day after withholding water, levels of O2·-, H2O2, malonaldehyde (MDA) and electrolyte leakage in the leaves were substantially increased by 143%, 38%, 134% and 155%, respectively. Exogenous GB treatment was substantially reduced O2·-, H2O2, MDA and electrolyte leakage (38%, 24%, 38% and 36%, respectively) in drought-stressed leaves. Furthermore, exogenous GB induced considerably higher antioxidant enzyme activity in dry-stressed leaves than drought-stressed treatment alone on the sixth day after withholding water, such as superoxide dismutase (SOD) (201%) and peroxidase (POD) (127%). In addition, these GB-induced phenomena led to increased endogenous GB levels in the leaves of the GB 100 + drought and GB 500 + drought treatment groups by 30% and 78%, respectively, compared to drought treatment alone. The findings obtained were confirmed by the results of the disconnected leaf tests, in which GB contributed to a substantial increase in SOD activity and parallel dose- and time-based decreases in MDA levels. These results demonstrate that GB-conferred drought resistance in pears may be due in part to minimizing symptoms of oxidative harm incurred in response to drought by the activities of antioxidants and by reducing the build-up of ROS and lipid peroxidation.


Subject(s)
Betaine/pharmacology , Osmotic Pressure/drug effects , Oxidative Stress/drug effects , Pyrus/metabolism , Droughts , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Pyrus/drug effects , Superoxide Dismutase/metabolism
20.
Nat Commun ; 12(1): 4269, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34257284

ABSTRACT

The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall (QAH) effect and topologically protected chiral edge states which can carry dissipationless current. Current realizations of the QAH state often require complex heterostructures and sub-Kelvin temperatures, making the discovery of intrinsic, high temperature QAH systems of significant interest. In this work we show that time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust chiral edge states. We present combined scanning tunneling spectroscopy and theoretical investigations of the magnetic Weyl semimetal, Co3Sn2S2. Using modeling and numerical simulations we find that depending on the strength of the interlayer coupling, chiral edge states can be localized on partially exposed kagome planes on the surfaces of a Weyl semimetal. Correspondingly, our dI/dV maps on the kagome Co3Sn terraces show topological states confined to the edges which display linear dispersion. This work provides a new paradigm for realizing chiral edge modes and provides a pathway for the realization of higher temperature QAH effect in magnetic Weyl systems in the two-dimensional limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...