Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4075, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744965

ABSTRACT

Semiconductor heterojunctions are ubiquitous components of modern electronics. Their properties depend crucially on the band alignment at the interface, which may exhibit straddling gap (type-I), staggered gap (type-II) or broken gap (type-III). The distinct characteristics and applications associated with each alignment make it highly desirable to switch between them within a single material. Here we demonstrate an electrically tunable transition between type-I and type-II band alignments in MoSe2/WS2 heterobilayers by investigating their luminescence and photocurrent characteristics. In their intrinsic state, these heterobilayers exhibit a type-I band alignment, resulting in the dominant intralayer exciton luminescence from MoSe2. However, the application of a strong interlayer electric field induces a transition to a type-II band alignment, leading to pronounced interlayer exciton luminescence. Furthermore, the formation of the interlayer exciton state traps free carriers at the interface, leading to the suppression of interlayer photocurrent and highly nonlinear photocurrent-voltage characteristics. This breakthrough in electrical band alignment control, interlayer exciton manipulation, and carrier trapping heralds a new era of versatile optical and (opto)electronic devices composed of van der Waals heterostructures.

2.
Phys Rev Lett ; 132(15): 156301, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683008

ABSTRACT

A valley filter capable of generating a valley-polarized current is a crucial element in valleytronics, yet its implementation remains challenging. Here, we propose a valley filter made of a graphene bilayer which exhibits a 1D moiré pattern in the overlapping region of the two layers controlled by heterostrain. In the presence of a lattice modulation between layers, electrons propagating in one layer can have valley-dependent dissipation due to valley asymmetric interlayer coupling, thus giving rise to a valley-polarized current. Such a process can be described by an effective non-Hermitian theory, in which the valley filter is driven by a valley-resolved non-Hermitian skin effect. Nearly 100% valley polarization can be achieved within a wide parameter range and the functionality of the valley filter is electrically tunable. The non-Hermitian topological scenario of the valley filter ensures high tolerance against imperfections such as disorder and edge defects. Our work opens a new route for efficient and robust valley filters while significantly relaxing the stringent implementation requirements.

3.
Science ; 376(6591): 406-410, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35446643

ABSTRACT

Interlayer excitons, electron-hole pairs bound across two monolayer van der Waals semiconductors, offer promising electrical tunability and localizability. Because such excitons display weak electron-hole overlap, most studies have examined only the lowest-energy excitons through photoluminescence. We directly measured the dielectric response of interlayer excitons, which we accessed using their static electric dipole moment. We thereby determined an intrinsic radiative lifetime of 0.40 nanoseconds for the lowest direct-gap interlayer exciton in a tungsten diselenide/molybdenum diselenide heterostructure. We found that differences in electric field and twist angle induced trends in exciton transition strengths and energies, which could be related to wave function overlap, moiré confinement, and atomic reconstruction. Through comparison with photoluminescence spectra, this study identifies a momentum-indirect emission mechanism. Characterization of the absorption is key for applications relying on light-matter interactions.

4.
Nano Lett ; 22(5): 1829-1835, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35201774

ABSTRACT

We report the observation of QΓ intervalley exciton in bilayer WSe2 devices encapsulated by boron nitride. The QΓ exciton resides at ∼18 meV below the QK exciton. The QΓ and QK excitons exhibit different Stark shifts under an out-of-plane electric field due to their different interlayer dipole moments. By controlling the electric field, we can switch their energy ordering and control which exciton dominates the luminescence of bilayer WSe2. Remarkably, both QΓ and QK excitons exhibit unusually strong two-phonon replicas, which are comparable to or even stronger than the one-phonon replicas. By detailed theoretical simulation, we reveal the existence of numerous (≥14) two-phonon scattering paths involving (nearly) resonant exciton-phonon scattering in bilayer WSe2. To our knowledge, such electric-field-switchable intervalley excitons with strong two-phonon replicas have not been found in any other two-dimensional semiconductors. These make bilayer WSe2 a distinctive valleytronic material with potential novel applications.

5.
Nat Commun ; 12(1): 6131, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34675213

ABSTRACT

Exciton polaron is a hypothetical many-body quasiparticle that involves an exciton dressed with a polarized electron-hole cloud in the Fermi sea. It has been evoked to explain the excitonic spectra of charged monolayer transition metal dichalcogenides, but the studies were limited to the ground state. Here we measure the reflection and photoluminescence of monolayer MoSe2 and WSe2 gating devices encapsulated by boron nitride. We observe gate-tunable exciton polarons associated with the 1 s-3 s exciton Rydberg states. The ground and excited exciton polarons exhibit comparable energy redshift (15~30 meV) from their respective bare excitons. The robust excited states contradict the trion picture because the trions are expected to dissociate in the excited states. When the Fermi sea expands, we observe increasingly severe suppression and steep energy shift from low to high exciton-polaron Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Our experiment and theory demonstrate the exciton-polaron nature of both the ground and excited excitonic states in charged monolayer MoSe2 and WSe2.

6.
Phys Rev Lett ; 127(3): 037402, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34328773

ABSTRACT

We have measured the reflectance contrast, photoluminescence, and valley polarization of a WSe_{2}/WS_{2} heterobilayer moiré superlattice at gate-tunable charge density. We observe absorption modulation of three intralayer moiré excitons at filling factors ν=1/3 and 2/3. We also observe luminescence modulation of interlayer trions at around a dozen fractional filling factors, including ν=-3/2, 1/4, 1/3, 2/5, 2/3, 6/7, 5/3. Remarkably, the valley polarization of interlayer trions is suppressed at some fractional fillings. These results demonstrate that electron crystallization can modulate the absorption, emission, and valley dynamics of the excitonic states in a moiré superlattice.

7.
Nature ; 594(7861): 46-50, 2021 06.
Article in English | MEDLINE | ID: mdl-34079140

ABSTRACT

Moiré superlattices formed by van der Waals materials can support a wide range of electronic phases, including Mott insulators1-4, superconductors5-10 and generalized Wigner crystals2. When excitons are confined by a moiré superlattice, a new class of exciton emerges, which holds promise for realizing artificial excitonic crystals and quantum optical effects11-16. When such moiré excitons are coupled to charge carriers, correlated states may arise. However, no experimental evidence exists for charge-coupled moiré exciton states, nor have their properties been predicted by theory. Here we report the optical signatures of trions coupled to the moiré potential in tungsten diselenide/molybdenum diselenide heterobilayers. The moiré trions show multiple sharp emission lines with a complex charge-density dependence, in stark contrast to the behaviour of conventional trions. We infer distinct contributions to the trion emission from radiative decay in which the remaining carrier resides in different moiré minibands. Variation of the trion features is observed in different devices and sample areas, indicating high sensitivity to sample inhomogeneity and variability. The observation of these trion features motivates further theoretical and experimental studies of higher-order electron correlation effects in moiré superlattices.

8.
Phys Rev Lett ; 124(19): 196802, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469553

ABSTRACT

Excitons and trions (or exciton polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe_{2}. We observe the intervalley dark excitons, which can recombine by the assistance of defect scattering or chiral-phonon emission. We also reveal that a trion can decay in two distinct paths-through intravalley or intervalley electron-hole recombination-into two different final valley states. Although these two paths are energy degenerate, we can distinguish them by lifting the valley degeneracy under a magnetic field. In addition, the intra- and inter-valley trion transitions are coupled to zone-center and zone-corner chiral phonons, respectively, to produce distinct phonon replicas. The observed multipath optical decays of dark excitons and trions provide insight into the internal quantum structure of trions and the complex excitonic interactions with defects and chiral phonons in monolayer valley semiconductors.

9.
Phys Rev Lett ; 124(9): 097401, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32202881

ABSTRACT

We investigate Landau-quantized excitonic absorption and luminescence of monolayer WSe_{2} under magnetic field. We observe gate-dependent quantum oscillations in the bright exciton and trions (or exciton polarons) as well as the dark trions and their phonon replicas. Our results reveal spin- and valley-polarized Landau levels (LLs) with filling factors n=+0, +1 in the bottom conduction band and n=-0 to -6 in the top valence band, including the Berry-curvature-induced n=±0 LLs of massive Dirac fermions. The LL filling produces periodic plateaus in the exciton energy shift accompanied by sharp oscillations in the exciton absorption width and magnitude. This peculiar exciton behavior can be simulated by semiempirical calculations. The experimentally deduced g factors of the conduction band (g∼2.5) and valence band (g∼15) exceed those predicted in a single-particle model (g=1.5, 5.5, respectively). Such g-factor enhancement implies strong many-body interactions in gated monolayer WSe_{2}. The complex interplay between Landau quantization, excitonic effects, and many-body interactions makes monolayer WSe_{2} a promising platform to explore novel correlated quantum phenomena.

10.
Phys Rev Lett ; 123(2): 027401, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386514

ABSTRACT

Monolayer WSe_{2} is an intriguing material to explore dark exciton physics. We have measured the photoluminescence from dark excitons and trions in ultraclean monolayer WSe_{2} devices encapsulated by boron nitride. The dark trions can be tuned continuously between negative and positive trions with electrostatic gating. We reveal their spin-triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under a magnetic field. The dark trion binding energies are 14-16 meV, slightly lower than the bright trion binding energies (21-35 meV). The dark trion lifetime (∼1.3 ns) is two orders of magnitude longer than the bright trion lifetime (∼10 ps) and can be tuned between 0.4 and 1.3 ns by gating. Such robust, optically detectable, and gate tunable dark trions may help us realize trion transport in two-dimensional materials.

11.
Nano Lett ; 18(12): 7962-7968, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30403355

ABSTRACT

Due to the nontrivial topological band structure in type II Weyl semi-metal tungsten ditelluride (WTe2), unconventional properties may emerge in its superconducting phase. While realizing intrinsic superconductivity has been challenging in the type II Weyl semi-metal WTe2, the proximity effect may open an avenue for the realization of superconductivity. Here, we report the observation of proximity-induced superconductivity with a long coherence length along the c axis in WTe2 thin flakes based on a WTe2/NbSe2 van der Waals heterostructure. Interestingly, we also observe anomalous oscillations of the differential resistance during the transition from the superconducting to the normal state. Theoretical calculations show excellent agreement with experimental results, revealing that such a subgap anomaly is the intrinsic property of WTe2 in superconducting state induced by the proximity effect. Our findings enrich the understanding of the superconducting phase of type II Weyl semi-metals and pave the way for their future applications in topological quantum computing.

12.
Nano Lett ; 18(12): 7538-7545, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30480455

ABSTRACT

Nanostructuring is an extremely promising path to high-performance thermoelectrics. Favorable improvements in thermal conductivity are attainable in many material systems, and theoretical work points to large improvements in electronic properties. However, realization of the electronic benefits in practical materials has been elusive experimentally. A key challenge is that experimental identification of the quantum confinement length, below which the thermoelectric power factor is significantly enhanced, remains elusive due to lack of simultaneous control of size and carrier density. Here we investigate gate-tunable and temperature-dependent thermoelectric transport in γ-phase indium selenide (γ-InSe, n-type semiconductor) samples with thickness varying from 7 to 29 nm. This allows us to properly map out dimension and doping space. Combining theoretical and experimental studies, we reveal that the sharper pre-edge of the conduction-band density of states arising from quantum confinement gives rise to an enhancement of the Seebeck coefficient and the power factor in the thinner InSe samples. Most importantly, we experimentally identify the role of the competition between quantum confinement length and thermal de Broglie wavelength in the enhancement of power factor. Our results provide an important and general experimental guideline for optimizing the power factor and improving the thermoelectric performance of two-dimensional layered semiconductors.

13.
ACS Nano ; 12(9): 9513-9520, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30118592

ABSTRACT

van der Waals (vdW) heterostructures made of two-dimensional materials have been demonstrated to be versatile architectures for optoelectronic applications due to strong light--matter interactions. However, most light-controlled phenomena and applications in the vdW heterostructures rely on positive photoconductance (PPC). Negative photoconductance (NPC) has not yet been reported in vdW heterostructures. Here we report the observation of the NPC in the ReS2/h-BN/MoS2 vdW heterostructure-based floating gate phototransistor. The fabricated devices exhibit excellent performance of nonvolatile memory without light illumination. More interestingly, we observe a gate-tunable transition between the PPC and the NPC under the light illumination. The observed NPC phenomenon can be attributed to charge transfer between the floating gate and the conduction channel. Furthermore, we show that control of NPC through light intensity is promising in realization of light-tunable multibit memory devices. Our results may enable potential applications in multifunctional memories and optoelectronic devices.

14.
Nano Lett ; 18(2): 1410-1415, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29385803

ABSTRACT

Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe2, a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature Tc ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field Bc2, (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane Bc2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.

15.
Nanoscale ; 9(48): 19124-19130, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29184960

ABSTRACT

As one of the most important family members of two-dimensional (2D) materials, the growth and damage-free transfer of transition metal dichalcogenides (TMDs) play crucial roles in their future applications. Here, we report a damage-free and highly efficient approach to transfer single and few-layer 2D TMDs to arbitrary substrates by dissolving a sacrificial water-soluble layer, which is formed underneath 2D TMD flakes simultaneously during the growth process. It is demonstrated, for monolayer MoS2, that no quality degradation is found after the transfer by performing transmission electron microscopy, Raman spectroscopy, photoluminescence and electrical transport studies. The field effect mobility of the post-transfer MoS2 flakes was found to be improved by 2-3 orders compared with that of the as-grown ones. This approach was also demonstrated to be applicable to other TMDs, other halide salts as precursors, or other growth substrates, indicating its universality for other 2D materials. Our work may pave the way for material synthesis of future integrated electronic and optoelectronic devices based on 2D TMD materials.

16.
Sci Adv ; 3(6): e1700589, 2017 06.
Article in English | MEDLINE | ID: mdl-28695200

ABSTRACT

The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 µm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 109 Jones was obtained in the 3- to 5-µm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/f noise in photonic devices.

17.
Nat Commun ; 7: 13142, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725682

ABSTRACT

The progress in exploiting new electronic materials has been a major driving force in solid-state physics. As a new state of matter, a Weyl semimetal (WSM), in particular a type-II WSM, hosts Weyl fermions as emergent quasiparticles and may harbour novel electrical transport properties. Nevertheless, such a type-II WSM material has not been experimentally observed. In this work, by performing systematic magneto-transport studies on thin films of a predicted material candidate WTe2, we observe notable negative longitudinal magnetoresistance, which can be attributed to the chiral anomaly in WSM. This phenomenon also exhibits strong planar orientation dependence with the absence along the tungsten chains, consistent with the distinctive feature of a type-II WSM. By applying a gate voltage, we demonstrate that the Fermi energy can be in-situ tuned through the Weyl points via the electric field effect. Our results may open opportunities for implementing new electronic applications, such as field-effect chiral devices.

18.
Nano Lett ; 16(4): 2254-9, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26886761

ABSTRACT

van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic applications, such as broadband photodetection, are severely hindered by their limited spectral range and reduced light absorption. Here, we present a p-g-n heterostructure formed by sandwiching graphene with a gapless band structure and wide absorption spectrum in an atomically thin p-n junction to overcome these major limitations. We have successfully demonstrated a MoS2-graphene-WSe2 heterostructure for broadband photodetection in the visible to short-wavelength infrared range at room temperature that exhibits competitive device performance, including a specific detectivity of up to 10(11) Jones in the near-infrared region. Our results pave the way toward the implementation of atomically thin heterostructures for broadband and sensitive optoelectronic applications.

19.
Nat Commun ; 6: 8119, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26360786

ABSTRACT

As the thinnest conductive and elastic material, graphene is expected to play a crucial role in post-Moore era. Besides applications on electronic devices, graphene has shown great potential for nano-electromechanical systems. While interlayer interactions play a key role in modifying the electronic structures of layered materials, no attention has been given to their impact on electromechanical properties. Here we report the positive piezoconductive effect observed in suspended bi- and multi-layer graphene. The effect is highly layer number dependent and shows the most pronounced response for tri-layer graphene. The effect, and its dependence on the layer number, can be understood as resulting from the strain-induced competition between interlayer coupling and intralayer transport, as confirmed by the numerical calculations based on the non-equilibrium Green's function method. Our results enrich the understanding of graphene and point to layer number as a powerful tool for tuning the electromechanical properties of graphene for future applications.

20.
Nat Commun ; 6: 6991, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25947630

ABSTRACT

Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS2) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS2 field-effect transistors, which exhibit competitive performance with large current on/off ratios (∼10(7)) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconducting materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS2 anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...