Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Anal Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953489

ABSTRACT

26% of the world's population lacks access to clean drinking water; clean water and sanitation are major global challenges highlighted by the UN Sustainable Development Goals, indicating water security in public water systems is at stake today. Water monitoring using precise instruments by skilled operators is one of the most promising solutions. Despite decades of research, the professionalism-convenience trade-off when monitoring ubiquitous metal ions remains the major challenge for public water safety. Thus, to overcome these disadvantages, an easy-to-use and highly sensitive visual method is desirable. Herein, an innovative strategy for one-to-nine metal detection is proposed, in which a novel thiourea spectroscopic probe with high 9-metal affinity is synthesized, acting as "one", and is detected based on the 9 metal-thiourea complexes within portable spectrometers in the public water field; this is accomplished by nonspecialized personnel as is also required. During the processing of multimetal analysis, issues arise due to signal overlap and reproducibility problems, leading to constrained sensitivity. In this innovative endeavor, machine learning (ML) algorithms were employed to extract key features from the composite spectral signature, addressing multipeak overlap, and completing the detection within 30-300 s, thus achieving a detection limit of 0.01 mg/L and meeting established conventional water quality standards. This method provides a convenient approach for public drinking water safety testing.

2.
J Transl Med ; 22(1): 626, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965561

ABSTRACT

The persistence of coronavirus disease 2019 (COVID-19)-related hospitalization severely threatens medical systems worldwide and has increased the need for reliable detection of acute status and prediction of mortality. We applied a systems biology approach to discover acute-stage biomarkers that could predict mortality. A total 247 plasma samples were collected from 103 COVID-19 (52 surviving COVID-19 patients and 51 COVID-19 patients with mortality), 51 patients with other infectious diseases (IDCs) and 41 healthy controls (HCs). Paired plasma samples were obtained from survival COVID-19 patients within 1 day after hospital admission and 1-3 days before discharge. There were clear differences between COVID-19 patients and controls, as well as substantial differences between the acute and recovery phases of COVID-19. Samples from patients in the acute phase showed suppressed immunity and decreased steroid hormone biosynthesis, as well as elevated inflammation and proteasome activation. These findings were validated by enzyme-linked immunosorbent assays and metabolomic analyses in a larger cohort. Moreover, excessive proteasome activity was a prominent signature in the acute phase among patients with mortality, indicating that it may be a key cause of poor prognosis. Based on these features, we constructed a machine learning panel, including four proteins [C-reactive protein (CRP), proteasome subunit alpha type (PSMA)1, PSMA7, and proteasome subunit beta type (PSMB)1)] and one metabolite (urocortisone), to predict mortality among COVID-19 patients (area under the receiver operating characteristic curve: 0.976) on the first day of hospitalization. Our systematic analysis provides a novel method for the early prediction of mortality in hospitalized COVID-19 patients.


Subject(s)
Biomarkers , COVID-19 , Proteasome Endopeptidase Complex , Humans , COVID-19/mortality , COVID-19/blood , Male , Female , Proteasome Endopeptidase Complex/metabolism , Middle Aged , Biomarkers/blood , Aged , SARS-CoV-2 , Prognosis , Adult , Steroids/biosynthesis , Steroids/blood , Acute Disease , Case-Control Studies , Machine Learning
3.
J Control Release ; 372: 571-586, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38897292

ABSTRACT

Microvascular dysfunction following myocardial infarction exacerbates coronary flow obstruction and impairs the preservation of ventricular function. The apelinergic system, known for its pleiotropic effects on improving vascular function and repairing ischemic myocardium, has emerged as a promising therapeutic target for myocardial infarction. Despite its potential, the natural apelin peptide has an extremely short circulating half-life. Current apelin analogs have limited receptor binding efficacy and poor targeting, which restricts their clinical applications. In this study, we utilized an enzyme-responsive peptide self-assembly technique to develop an enzyme-responsive small molecule peptide that adapts to the expression levels of matrix metalloproteinases in myocardial infarction lesions. This peptide is engineered to respond to the high concentration of matrix metalloproteinases in the lesion area, allowing for precise and abundant presentation of the apelin motif. The changes in hydrophobicity allow the apelin motif to self-assemble into a supramolecular multivalent peptide ligand-SAMP. This self-assembly behavior not only prolongs the residence time of apelin in the myocardial infarction lesion but also enhances the receptor-ligand interaction through increased receptor binding affinity due to multivalency. Studies have demonstrated that SAMP significantly promotes angiogenesis after ischemia, reduces cardiomyocyte apoptosis, and improves cardiac function. This novel therapeutic strategy offers a new approach to restoring coronary microvascular function and improving damaged myocardium after myocardial infarction.

4.
Int J Biol Macromol ; 270(Pt 1): 132017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697438

ABSTRACT

Citrus fruit rich in beneficial health-promoting nutrients used for functional foods or dietary supplements production. However, its quality and yield were damaged by citrus target spot. Citrus target spot is a low-temperature fungal disease caused by Pseudofabraea citricarpa, resulting in citrus production reductions and economic losses. In this study, transcriptome and gene knockout mutant analyses were performed on the growth and pathogenicity of P. citricarpa under different temperature conditions to quantify the functions of temperature-sensitive proteins (PscTSP). The optimum growth temperature for P. citricarpa strain WZ1 was 20 °C, while it inhibited or stopped growth above 30 °C and stopped growth below 4 °C or above 30 °C. Certain PscTSP-key genes of P. citricarpa were identified under high temperature stress. qRT-PCR analysis confirmed the expression levels of PscTSPs under high temperature stress. PscTSPs were limited by temperature and deletion of the PscTSP-X gene leads to changes in the integrity of citrus cell walls, osmotic regulation, oxidative stress response, calcium regulation, chitin synthesis, and the pathogenicity of P. citricarpa. These results provide insight into the underlying mechanisms of temperature sensitivity and pathogenicity in P. citricarpa, providing a foundation for developing resistance strategies against citrus target spot disease.


Subject(s)
Citrus , Fungal Proteins , Citrus/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Fungal , Temperature , Stress, Physiological , Hot Temperature , Virulence/genetics , Heat-Shock Response/genetics
5.
J Colloid Interface Sci ; 670: 395-408, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38772256

ABSTRACT

Photothermal synergistic catalysis is a novel technology that converts energy. In this study, ZnIn2S4 with S-vacancy (ZIS-Vs) is combined with Nickel, Nickle Oxide and Carbon Nanofiber aggregates (Ni-NiO@CNFs) to create a multi-interface coupled photocatalyst with double Schottky barrier, double channel and mixed photothermal conversion effect. Theoretical calculation confirms that the Gibbs free energy (ΔG*H) of the S-scheme heterojunction in the composite material is -0.07 eV, which is close to 0. This promotes the adsorption of H* and accelerates the formation of H2. Internal photothermal catalysis is achieved by visible-near infrared (Vis-NIR, RT) irradiation. The internal photothermal catalytic hydrogen production rate of the best sample (0.9Ni-NiO@CNFs/ZIS-Vs) is as high as 17.24 mmol·g-1·h-1, and its photothermal conversion efficiency (η) is as high as 61.42 %. Its hydrogen production efficiency is 20.52 times that of ZIS-Vs (0.84 mmol·g-1·h-1) under visible light (Vis, RT) conditions. When the Vis-NIR light source is combined with external heating (75 ℃), the hydrogen production efficiency is further improved, and the hydrogen production efficiency (29.16 mmol·g-1·h-1) is 26.75 times that of ZIS-Vs (1.09 mmol·g-1·h-1, Vis-NIR, RT). Further analysis shows that the increase in hydrogen production resulted from the apparent activation energy (Ea) of the catalyst decreasing from 16.7 kJ·mol-1 to 9.28 kJ·mol-1. This study provides a valuable prototype for the design of an efficient photothermal synergistic catalytic system.

6.
Theriogenology ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38821784

ABSTRACT

Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-ß signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.

7.
Front Genet ; 15: 1325484, 2024.
Article in English | MEDLINE | ID: mdl-38356698

ABSTRACT

Yellowhorn (Xanthoceras sorbifolium Bunge) is an oil-bearing tree species in northern China. In this study, we used yellowhorn from Heilongjiang to analyze the morphological and physiological changes of fruit development and conducted transcriptome sequencing. The results showed that the fruit experienced relatively slow growth from fertilization to DAF20 (20 days after flowering). From DAF40 to DAF60, the fruit entered an accelerated development stage, with a rapid increase in both transverse and longitudinal diameters, and the kernel contour developed completely at DAF40. From DAF60 to DAF80, the transverse and vertical diameters of the fruit developed slowly, and the overall measures remained stable until maturity. The soluble sugar, starch, and anthocyanin content gradually accumulated until reaching a peak at DAF80 and then rapidly decreased. RNA-seq analysis revealed differentially expressed genes (DEGs) in the seed coat and kernel, implying that seed components have different metabolite accumulation mechanisms. During the stages of seed kernel development, k-means clustering separated the DEGs into eight sub-classes, indicating gene expression shifts during the fruit ripening process. In subclass 8, the fatty acid biosynthesis pathway was enriched, suggesting that this class was responsible for lipid accumulation in the kernel. WGCNA revealed ten tissue-specific modules for the 12 samples among 20 modules. We identified 54 fatty acid biosynthesis pathway genes across the genome, of which 14 was quantified and confirmed by RT-qPCR. Most genes in the plastid synthesis stage showed high expression during the DAF40-DAF60 period, while genes in the endoplasmic reticulum synthesis stage showed diverse expression patterns. EVM0012847 (KCS) and EVM0002968 (HCD) showed similar high expression in the early stages and low expression in the late stages. EVM0022385 (HCD) exhibited decreased expression from DAF40 to DAF60 and then increased from DAF60 to DAF100. EVM0000575 (KCS) was increasingly expressed from DAF40 to DAF60 and then decreased from DAF60 to DAF100. Finally, we identified transcription factors (TFs) (HB-other, bHLH and ARF) that were predicted to bind to fatty acid biosynthesis pathway genes with significant correlations. These results are conducive to promoting the transcriptional regulation of lipid metabolism and the genetic improvement in terms of high lipid content of yellowhorn.

8.
Mar Pollut Bull ; 200: 116124, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325204

ABSTRACT

The combined effects of phosphorus (P) forms and zinc (Zn) concentrations on diatom silicification remain unclear. In this study, we investigate the effects of different Zn concentrations on the growth, cellular silicon content and sinking rate of Thalassiosira weissflogii under different P forms. The results showed that under the dissolved inorganic phosphorus (DIP) treatments, the specific growth rate of T. weissflogii in Zn limitation culture was significantly lower than that in Zn-replete culture. However, T. weissflogii cellular silicon content and sinking rate increased. Moreover, the reduced specific growth rate (7 %, p < 0.05), enhanced ALP activity (63 %, p < 0.05), and sinking rate (20 %, p < 0.05) for Zn-deplete T. weissflogii implied that the bioavailability of dissolved organic phosphorus (DOP) was depressed under Zn deplete medium. This study demonstrates that the physiological ecology and sinking rate of the diatom T. weissflogii were affected by both individual and combined changes in P forms and Zn concentrations.


Subject(s)
Diatoms , Diatoms/physiology , Zinc , Phosphorus/pharmacology , Silicon , Ecology
9.
J Hazard Mater ; 468: 133841, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38394898

ABSTRACT

Microplastics (MPs) have been recognized as a serious new pollutant, especially nanoplastics (NPs) pose a greater threat to marine ecosystem than larger MPs. Within these ecosystems, phytoplankton serve as the foundational primary producers, playing a critical role in carbon sequestration. Copper (Cu), a vital cofactor for both photosynthesis and respiration in phytoplankton, directly influences their capacity to regulate atmospheric carbon. Therefore, we assessed the impact of NPs on Cu bioavailability and carbon sequestration capacity. The results showed that polystyrene nanoplastics (PS-NPs) could inhibit the growth of Thalassiosira weissflogii (a commonly used model marine diatom) and Chlorella pyrenoidosa (a standard strain of green algae). The concentration of Cu uptake by algae has a significant negative correlation with COPT1 (a Cu uptake protein), but positive with P-ATPase (a Cu efflux protein). Interestingly, PS-NPs exposure could reduce Cu uptake and carbon Cu sequestration capacity of algae, i.e., when the concentration of PS-NPs increases by 1 mg/L, the concentration of fixed carbon dioxide decreases by 0.0023 ppm. This provides a new perspective to reveal the influence mechanisms of PS-NPs on the relationship between Cu biogeochemical cycling and carbon source and sink.


Subject(s)
Chlorella , Diatoms , Water Pollutants, Chemical , Ecosystem , Microplastics , Plastics , Copper , Biological Availability , Carbon Sequestration , Phytoplankton , Polystyrenes
10.
Ecotoxicol Environ Saf ; 270: 115833, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38181602

ABSTRACT

Elaborating on the fate tendency of thifluzamide (thiazole-amide fungicide) in buckwheat based on nationwide application is vital for grain security and human health based on nationwide application. A rapid and sensitive analytical method was developed to trace thifluzamide in buckwheat matrices using an ultrahigh-performance liquid chromatography-tandem triple quadrupole mass spectrometer (UHPLC-MS/MS), with a retention time of 2.90 min and limit of quantitation (LOQ) of 0.001 mg/kg. Thifluzamide could be stably stored for 84 d in buckwheat matrices under -20 °C under dark condition. The occurrence, dissipation and terminal magnitudes of thifluzamide were reflected by the primary deposition of 0.02-0.55 mg/kg, half-lives of 12-14 d, and highest residues of 0.41 mg/kg. The long-term risks (ADI%) of thifluzamide were 37.268 %-131.658 % in registered crops, and the risks for the rural population were significantly higher than those of the urban population. The unacceptable dietary risks of thifluzamide should be continuously emphasized for children aged 2-7 with an ADI% values of 100.750 %-131.658 %. A probabilistic model was further introduced to evaluate the risk discrepancy of thifluzamide in buckwheat, showing the risks in Tartary buckwheat (Fagopyrum tararicum Gaerth) were 1.5-75.4 times than that in sweet buckwheat (Fagopyrum esculentum Moench). Despite the low risks for dietary buckwheat, the high-potential health hazards of thifluzamide should be pay more attention given the increasing applications and cumulative effects.


Subject(s)
Anilides , Fagopyrum , Child , Humans , Fagopyrum/chemistry , Tandem Mass Spectrometry , Chromatography, Liquid , Thiazoles
11.
Phys Chem Chem Phys ; 26(6): 5377-5386, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38269624

ABSTRACT

Due to the crucial regulatory mechanism of cyclin-dependent kinase 9 (CDK9) in mRNA transcription, the development of kinase inhibitors targeting CDK9 holds promise as a potential treatment strategy for cancer. A structure-based virtual screening approach has been employed for the discovery of potential novel CDK9 inhibitors. First, compounds with kinase inhibitor characteristics were identified from the ZINC15 database via virtual high-throughput screening. Next, the predicted binding modes were optimized by molecular dynamics simulations, followed by precise estimation of binding affinities using absolute binding free energy calculations based on the free energy perturbation scheme. The binding mode of molecule 006 underwent an inward-to-outward flipping, and the new binding mode exhibited binding affinity comparable to the small molecule T6Q in the crystal structure (PDB ID: 4BCF), highlighting the essential role of molecular dynamics simulation in capturing a plausible binding pose bridging docking and absolute binding free energy calculations. Finally, structural modifications based on these findings further enhanced the binding affinity with CDK9. The results revealed that enhancing the molecule's rigidity through ring formation, while maintaining the major interactions, reduced the entropy loss during the binding process and, thus, enhanced binding affinities.


Subject(s)
Cyclin-Dependent Kinase 9 , High-Throughput Screening Assays , Protein Binding , Entropy , Molecular Docking Simulation , Molecular Dynamics Simulation
12.
J Control Release ; 366: 838-848, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145663

ABSTRACT

Doxorubicin, an anthracycline chemotherapeutic agent, elicits a deleterious cardiotoxicity known as doxorubicin-induced cardiomyopathy (DIC) that circumscribes its chemotherapy utility for malignancies. Recent empirical evidence implicates ferroptosis, an iron-dependent form of regulated cell death, as playing a pivotal role in the pathogenesis of DIC. We postulated that anti-ferroptosis agents may constitute a novel therapeutic strategy for mitigating DIC. To test this hypothesis, we engineered baicalin-peptide supramolecular self-assembled nanofibers designed to selectively target the angiotensin II type I receptor (AT1R), which is upregulated in doxorubicin-damaged cardiomyocytes. This enabled targeted delivery of baicalin, a natural antioxidant compound, to inhibit ferroptosis in the afflicted myocardium. In vitro, the nanofibers ameliorated cardiomyocyte death by attenuating peroxide accumulation and suppressing ferroptosis. In a murine model of DIC, AT1R-targeted baicalin delivery resulted in efficacious cardiac accumulation and superior therapeutic effects compared to systemic administration. This investigation delineates a promising framework for developing targeted therapies that alleviate doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis pathway in cardiomyocytes.


Subject(s)
Ferroptosis , Flavonoids , Nanofibers , Animals , Mice , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Doxorubicin , Myocytes, Cardiac , Peptides/therapeutic use
13.
Small ; 20(21): e2307390, 2024 May.
Article in English | MEDLINE | ID: mdl-38100300

ABSTRACT

Tumor immunotherapy has become a research hotspot in cancer treatment, with macrophages playing a crucial role in tumor development. However, the tumor microenvironment restricts macrophage functionality, limiting their therapeutic potential. Therefore, modulating macrophage function and polarization is essential for enhancing tumor immunotherapy outcomes. Here, a supramolecular peptide amphiphile drug-delivery system (SPADS) is utilized to reprogram macrophages and reshape the tumor immune microenvironment (TIM) for immune-based therapies. The approach involved designing highly specific SPADS that selectively targets surface receptors of M2-type macrophages (M2-Mφ). These targeted peptides induced M2-Mφ repolarization into M1-type macrophages by dual inhibition of endoplasmic reticulum and oxidative stresses, resulting in improved macrophagic antitumor activity and immunoregulatory function. Additionally, TIM reshaping disrupted the immune evasion mechanisms employed by tumor cells, leading to increased infiltration, and activation of immune cells. Furthermore, the synergistic effect of macrophage reshaping and anti-PD-1 antibody (aPD-1) therapy significantly improved the immune system's ability to recognize and eliminate tumor cells, thereby enhancing tumor immunotherapy efficacy. SPADS utilization also induced lung metastasis suppression. Overall, this study demonstrates the potential of SPADS to drive macrophage reprogramming and reshape TIM, providing new insights, and directions for developing more effective immunotherapeutic approaches in cancer treatment.


Subject(s)
Breast Neoplasms , Immunotherapy , Nanospheres , Peptides , Tumor Microenvironment , Tumor-Associated Macrophages , Tumor Microenvironment/drug effects , Immunotherapy/methods , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Animals , Nanospheres/chemistry , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Peptides/chemistry , Peptides/pharmacology , Female , Mice , Cell Line, Tumor , Humans , Mice, Inbred BALB C
14.
Korean J Physiol Pharmacol ; 27(6): 521-531, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37884284

ABSTRACT

Transmembrane protein TMEM16A, which encodes calcium-activated chloride channel has been implicated in tumorigenesis. Overexpression of TMEM16A is associated with poor prognosis and low overall survival in multiple cancers including lung adenocarcinoma, making it a promising biomarker and therapeutic target. In this study, three structure-related sesquiterpene lactones (mecheliolide, costunolide and dehydrocostus lactone) were extracted from the traditional Chinese medicine Aucklandiae Radix and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on the proliferation and migration of lung adenocarcinoma cells were examined. Whole-cell patch clamp experiments showed that these sesquiterpene lactones potently inhibited recombinant TMEM16A currents in a concentration-dependent manner. The half-maximal concentration (IC50) values for three tested sesquiterpene lactones were 29.9 ± 1.1 µM, 19.7 ± 0.4 µM, and 24.5 ± 2.1 µM, while the maximal effect (Emax) values were 100.0% ± 2.8%, 85.8% ± 0.9%, and 88.3% ± 4.6%, respectively. These sesquiterpene lactones also significantly inhibited the endogenous TMEM16A currents and proliferation, and migration of LA795 lung cancer cells. These results demonstrate that mecheliolide, costunolide and dehydrocostus lactone are novel TMEM16A inhibitors and potential candidates for lung adenocarcinoma therapy.

15.
Mar Pollut Bull ; 195: 115454, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703631

ABSTRACT

Many plastic products are used in aquaculture. Studying the toxicological effects of plastics differing in water solubility on marine organisms can provide valuable information. In this study, different amounts of polyvinyl alcohol (PVA) and polyethylene (PE) films were embedded in the feed and fed to Acanthopagrus schlegelii. After 1, 2, 4, and 8 weeks, the changes in percentage weight gain (PWG), feed efficiency (FE), pepsin activity (PA), and trypsin activity (TA) were observed. Either fed to PE or PVA, PWG, and FE of the experimental group were lower than those of the control group after eight weeks. Plastics level recovered from digestive tracts, feces, and water were higher in the PE groups than in the PVA groups. PA rose with increased feeding of plastics, but TA showed the opposite trend. TA activity decreased with increased feeding of plastics. Further analysis showed that TA was positively correlated with PWG.

16.
J Org Chem ; 88(17): 12668-12676, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37603684

ABSTRACT

The influence of steric effects on the rates of hydrogen atom transfer (HAT) reactions between oxyradicals and alkanes is explored computationally. Quantum chemical density functional theory computations of transition states show that activation barriers and reaction enthalpies are both influenced by bulky substituents on the radical but very little by substituents on the alkane. The activation barriers remain roughly correlated with reaction enthalpies via the Evans-Polanyi relationship even when steric repulsion effects become important, although dispersion effects sometimes stabilize transition states. By making comparisons to previously developed Evans-Polanyi and modified Roberts-Steel relationships, we find that HAT reactions between bulky molecules remain well-described by these relationships.

17.
Heliyon ; 9(6): e17529, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37408927

ABSTRACT

This study aims to develop a simplified log creep model (LgCM) for predicting the triaxial three-stage creep behaviors of mélange rocks. The model was deduced from the creep deformation mechanism by considering the competition of strain rate hardening and damage during the steady and accelerating creep stages and was described by two simplified fractal functions. The model was then compared with the previous creep models on the uniaxial three-stage creep data of mortar, rock salt, and sandy shale, as well as the triaxial low-stress creep data of claystone. Afterward, the triaxial creep experimental results of the mélange rock samples were introduced to illustrate the process of calibrating the model in predicting the triaxial three-stage creep behaviors of mélange rocks. It was found the developed LgCM model showed good performance in predicting both the uniaxial and triaxial three-stage creep behaviors of rocks. The investigation reveals that the trend of the parameter ß can indicate three thresholds of the hardening and damaging effects, and provide the equation to reproduce the creep behavior of the mélange rock. The work contributes to understanding the time-dependent failure of underground rock mass in mélange rock formations.

18.
Front Genet ; 14: 1158631, 2023.
Article in English | MEDLINE | ID: mdl-37303956

ABSTRACT

Invasion of C. fulvum causes the most serious diseases affecting the reproduction of tomatoes. Cf-10-gene-carrying line showed remarkable resistance to Cladosporium fulvum. To exploit its defense response mechanism, we performed a multiple-omics profiling of Cf-10-gene-carrying line and a susceptible line without carrying any resistance genes at non-inoculation and 3 days post-inoculation (dpi) of C. fulvum. We detected 54 differentially expressed miRNAs (DE-miRNAs) between the non-inoculation and 3 dpi in the Cf-10-gene-carrying line, which potentially regulated plant-pathogen interaction pathways and hormone signaling pathways. We also revealed 3,016 differentially expressed genes (DEGs) between the non-inoculated and 3 dpi in the Cf-10-gene-carrying line whose functions enriched in pathways that were potentially regulated by the DE-miRNAs. Integrating DE-miRNAs, gene expression and plant-hormone metabolites indicated a regulation network where the downregulation of miRNAs at 3 dpi activated crucial resistance genes to trigger host hypersensitive cell death, improved hormone levels and upregulated the receptors/critical responsive transcription factors (TFs) of plant hormones, to shape immunity to the pathogen. Notably, our transcriptome, miRNA and hormone metabolites profiling and qPCR analysis suggested that that the downregulation of miR9472 potentially upregulated the expression of SAR Deficient 1 (SARD1), a key regulator for ICS1 (Isochorismate Synthase 1) induction and salicylic acid (SA) synthesis, to improve the level of SA in the Cf-10-gene-carrying line. Our results exploited potential regulatory network and new pathways underlying the resistance to C. fulvum in Cf-10-gene-carrying line, providing a more comprehensive genetic circuit and valuable gene targets for modulating resistance to the virus.

19.
Chemosphere ; 337: 139308, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37364640

ABSTRACT

Human activities, including industrial and agricultural production, as well as domestic sewage discharge, have led to heavy metal pollution and eutrophication in coastal waters. This has caused a deficiency of dissolved inorganic phosphorus (DIP), but an excess dissolved organic phosphorus (DOP) and high concentrations of zinc. However, the impact of high zinc stress and different phosphorus species on primary producers remains unclear. This study examined the impact of different phosphorus species (DIP and DOP) and high zinc stress (1.74 mg L-1) on the growth and physiology of the marine diatom Thalassiosira weissflogii. The results showed that compared to the low zinc treatment (5 µg L-1), high zinc stress significantly decreased the net growth of T. weissflogii, but the decline was weaker in the DOP group than in the DIP group. Based on changes in photosynthetic parameters and nutrient concentrations, the study suggests that the growth inhibition of T. weissflogii under high zinc stress was likely due to an increase in cell death caused by zinc toxicity, rather than a decrease in cell growth caused by photosynthesis damage. Nonetheless, T. weissflogii was able to reduce zinc toxicity by antioxidant reactions through enhancing activities of superoxide dismutase and catalase and by cationic complexation through enhancing extracellular polymeric substances, particularly when DOP served as the phosphorus source. Furthermore, DOP had a unique detoxification mechanism by producing marine humic acid, which is conducive to complexing metal cations. These results provide valuable insights into the response of phytoplankton to environmental changes in coastal oceans, particularly the effects of high zinc stress and different phosphorus species on primary producers.


Subject(s)
Diatoms , Humans , Diatoms/metabolism , Zinc/metabolism , Phosphorus/metabolism , Phytoplankton/metabolism , Metals/metabolism
20.
Antioxidants (Basel) ; 12(4)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37107182

ABSTRACT

Purkinje cells (PCs), as a unique type of neurons output from the cerebellar cortex, are essential for the development and physiological function of the cerebellum. However, the intricate mechanisms underlying the maintenance of Purkinje cells are unclear. The O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuity. In this study, we demonstrate that the O-GlcNAc transferase (OGT) in PCs maintains the survival of PCs. Furthermore, a loss of OGT in PCs induces severe ataxia, extensor rigidity and posture abnormalities in mice. Mechanistically, OGT regulates the survival of PCs by inhibiting the generation of intracellular reactive oxygen species (ROS). These data reveal a critical role of O-GlcNAc signaling in the survival and maintenance of cerebellar PCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...