Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 150(3): 118, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466436

ABSTRACT

PURPOSE: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer cases are among the most aggressive breast tumor subtypes. Accurately assessing HER2 expression status is vital to determining whether patients will benefit from targeted anti-HER2 treatment. HER2-targeted positron emission tomography (PET/CT) is noninvasive, enabling the real-time evaluation of breast cancer patient HER2 status with accuracy. METHODS: We summarize the research progress of PET/CT targeting HER2 in breast cancer, focusing on PET/CT molecular probes targeting HER2 and their clinical application in the management of advanced breast cancer. RESULTS: At present, a variety of different HER2 targeted molecular probes for PET/CT imaging have been developed, including nucleolin-labeled antibodies, antibody fragments, nanobodies, and peptides of various affinities, among others. HER2-targeted PET/CT can relatively accurately evaluate HER2 expression status in advanced breast cancer patients. It has good performance in the early detection of small HER2-positive lesions, evaluation of HER2 status in lesions that cannot be readily biopsied, evaluation of the heterogeneity of multiple metastases, identification of lesions with altered HER2 status, and evaluation of the efficacy of anti-HER2 drugs. CONCLUSION: HER2-targeted PET/CT offers a promising noninvasive approach for real-time assessment of HER2 status,which can be guide targeted treatment for HER2-positive breast cancer patients. Future prospective clinical studies will be invaluable for fully evaluating the importance of HER2-targeted molecular imaging in the management of breast cancer.


Subject(s)
Breast Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Female , Positron Emission Tomography Computed Tomography/methods , Breast Neoplasms/metabolism , Positron-Emission Tomography , Receptor, ErbB-2/metabolism , Prospective Studies
2.
Environ Monit Assess ; 196(4): 350, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460005

ABSTRACT

In order to clarify the characteristics of microplastics in the atmosphere of Anyang city, TSP, PM10, and PM2.5 samples are collected when the ambient air quality is good, slightly polluted, and severely polluted. After pretreatment, the physical and chemical characteristics are observed and identified by using stereomicroscope and micro-infrared spectrometer. The results show that the average abundance of microplastics is 0.19 items/m3, 0.26 items/m3, and 0.42 items/m3, respectively, when the ambient air quality is good, light pollution, and heavy pollution in Anyang City. It can be seen that with the decline of ambient air quality, the average abundance of microplastics in TSP, PM2.5, and PM10 gradually increases. The black fiber strip microplastics account for about 80% of the total TSP, PM2.5, and PM10 in the ambient air of Anyang City, followed by yellow flake and black granular microplastics and a small amount of green, red, and blue fiber strip microplastics. AQI has a good correlation with the abundance of microplastics in TSP, PM10, and PM2.5, and the maximum microplastic trapping effect could be obtained according to the sampling method of PM2.5 in the ambient air. The main components of microplastics are cellophane, followed by PET and EVA. The explorations of human respiratory exposure risk assessment show that with the increase of AQI, the daily intake of microplastics in adults also increased. At high levels of pollution, the human body breathes an average of 222 ± 5 microplastics per day.


Subject(s)
Air Pollutants , Air Pollution , Adult , Humans , Air Pollutants/analysis , Microplastics , Plastics , Environmental Monitoring/methods , Air Pollution/analysis , Atmosphere , Particulate Matter/analysis
3.
Environ Sci Pollut Res Int ; 31(16): 24139-24152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436855

ABSTRACT

In order to reveal the adsorption mechanism of microplastics (MPs) on antibiotics, polystyrene (PS) was chosen as a typical microplastic, Fenton and high-temperature aging methods were used to obtain aged MPs particles. The adsorption behavior and mechanism of ciprofloxacin hydrochloride (CIP) on PS before and after aging were studied by batch adsorption experiments, and other influencing environmental conditions were evaluated concurrently. The results showed that the adsorption of CIP on PS was an exothermic reaction, the pseudo-second-order model and Freundlich isothermal models could fit the adsorption of CIP on PS. Aging treatment enhanced the adsorption capacity of PS to CIP, and Fenton aging for 7 days had the best effect. The highest adsorption was observed when the solution pH was 6. The adsorption capacity of microplastics gradually decreased with increasing ionic strength and the concentration of fulvic acid, while the aging microplastics changed little with the concentration of fulvic acid. The presence of both Cu (II) and CIP inhibits the adsorption of each other on microplastics. Based on the above findings, the adsorption of CIP on PS is dominated by physical adsorption, and electrostatic interactions and hydrogen bonding interactions are also important mechanisms for the adsorption of CIP on microplastics.


Subject(s)
Polystyrenes , Water Pollutants, Chemical , Microplastics , Plastics , Ciprofloxacin , Adsorption , Fresh Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL