Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Bioresour Technol ; 402: 130831, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734262

ABSTRACT

Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl- and Na+ concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater. Results showed that A. macleodii KD01 can rapidly degrade organic mercury (within 20 min) even at high concentrations (>10 ng/mL), volatilizing a portion of Hg from the wastewater. Further analysis revealed an increased transcription of organomercury lyase (merB) with rising organic mercury concentrations during the exposure process, suggesting the involvement of mer operon (merA and merB). These findings highlight A. macleodii KD01 as a promising candidate for addressing organic mercury pollution in high-salt wastewater.

2.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38567993

ABSTRACT

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Subject(s)
Mercury , Water Pollutants, Chemical , Mercury/analysis , Seawater/analysis , Seawater/chemistry , Isotopes/analysis , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 931: 172845, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38685427

ABSTRACT

Mercury (Hg) is one of the toxic metals of global and environmental concern, with aquatic Hg cycling being central in determining the production of highly toxic methylmercury and the air-water Hg exchange influencing the long-range intercontinental atmospheric Hg transport. Both inorganic and organic forms of Hg can be bound by suspended particles, including inorganic minerals (in particular metal oxides/sulfides) and particulate organic matter. Photochemical transformation is a critical process in surface water, and the role of suspended particles in Hg redox photoreactions has increasingly emerged, albeit in limited studies in comparison to extensive studies on aqueous (homogeneous) photoreactions of Hg. The lack of understanding of what roles suspended particles play might result in inaccurate estimation of how Hg species transform and/or cycle in the environment. In view of this gap, this paper critically reviews and synthesizes information on the studies conducted on different natural surface waters with respect to the potential roles of suspended particles on Hg photo-redox reactions. It robustly discusses the various possible pathways and/or mechanisms of particle-mediated Hg (II) reduction, in enhancing or lowering the production of dissolved gaseous mercury. These processes include photo hole-electron pair formation and reactive oxygen species generation from particle excitation and their involvement in Hg photoreduction, in addition to the light attenuation effect of particles. This paper highlights the necessity of future studies exploiting these particles-mediated Hg photoreactions pathways and the implications of including these heterogeneous photoreactions (together with particulate elemental Hg species) on the air-water Hg exchange estimation.

4.
Vet Microbiol ; 293: 110096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636174

ABSTRACT

IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.


Subject(s)
Coronavirus Infections , Immunoglobulin A , Intestine, Small , Porcine epidemic diarrhea virus , Swine Diseases , Toll-Like Receptor 9 , Animals , Swine , Porcine epidemic diarrhea virus/immunology , Swine Diseases/immunology , Swine Diseases/virology , Intestine, Small/immunology , Immunoglobulin A/immunology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , B-Lymphocytes/immunology , Coculture Techniques , Dendritic Cells/immunology
5.
Vet Microbiol ; 292: 110055, 2024 May.
Article in English | MEDLINE | ID: mdl-38513523

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is characterized by watery diarrhea, vomiting, and dehydration and is associated with high mortality especially in newborn piglets, causing significant economic losses to the global pig industry. Hypoxia inducible factor-1α (HIF-1α) has been identified as a key regulator of TGEV-induced inflammation, but understanding of the effect of HIF-1α on TGEV infection remains limited. This study found that TGEV infection was associated with a marked increase in HIF-1α expression in ST cells and an intestinal organoid epithelial monolayer. Furthermore, HIF-1α was shown to facilitate TGEV infection by targeting viral replication, which was achieved by restraining type I and type III interferon (IFN) production. In vivo experiments in piglets demonstrated that the HIF-1α inhibitor BAY87-2243 significantly reduced HIF-1α expression and inhibited TGEV replication and pathogenesis by activating IFN production. In summary, we unveiled that HIF-1α facilitates TGEV replication by restraining type I and type III IFN production in vitro, ex vivo, and in vivo. The findings from this study suggest that HIF-1α could be a novel antiviral target and candidate drug against TGEV infection.


Subject(s)
Gastroenteritis, Transmissible, of Swine , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Interferon Lambda , Intestines , Virus Replication , Hypoxia/veterinary
6.
Environ Pollut ; 346: 123554, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38395130

ABSTRACT

In the past few decades, mercury (Hg) discharged into the coastal bays of China has significantly increased; however, long-term trends regarding the pollution status and sources of Hg in these bays have yet to be clear. Focusing on this issue, surface sediments and core sediments were collected in the Jiaozhou Bay (JZB), a typical bay highly affected by human activities in China, to analyze the concentrations and stable isotopic composition of Hg. Total mercury (THg) concentrations in surface sediment varied from 7 to 163 ng/g, with higher levels located in the eastern JZB, possibly attributed to intensive industrial and population density. THg in sediment cores 14 and 20 displayed fluctuating increasing trends from 1936 to 2019, reflecting the deterioration of Hg pollution. In contrast, THg in sediment core 28 near the river mouth exhibited a declining trend, possibly due to the river dam construction. Using a stable isotope mixing model, contributions of various sources (atmospheric, riverine, and industrial emissions) to Hg in the JZB were estimated. The results showed that industrial emissions were the main source (over 50%) of mercury in the JZB in 2019. Sediment cores recorded an increase in industrial Hg due to early industrialization and Reform and Opening-up before 2000. In addition, sediment core 20 demonstrated a rise in the percentage of riverine Hg due to land reclamation at the bay's mouth during 2000-2007.


Subject(s)
Mercury , Water Pollutants, Chemical , Humans , Mercury/analysis , Bays , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments , Isotopes , China
7.
Int Wound J ; 21(3): e14728, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38385835

ABSTRACT

Pediatric otolaryngology surgeries are crucial interventions requiring careful consideration of surgical methods to optimize outcomes. The choice between open and minimally invasive surgical approaches in this context warrants thorough investigation. While both methods aim to address ear, nose, and throat conditions in children, a comparative study assessing their impact on crucial factors such as intraoperative parameters, wound healing, complications, and postoperative pain is essential. This study aims to compare the effects of open and minimally invasive surgical methods on wound healing and infection in pediatric otolaryngology surgery, and provide a scientific basis for the selection of surgical methods. Two groups of patients were selected, with 90 people in each group. One group received open surgery and the other received minimally invasive surgery. Recording the intraoperative time, anesthesia time, and intraoperative blood loss; the number of days required for wound healing; the occurrence of wound-related complications; the comparison of pain on postoperative Days 1, 3, and 7; and the factors influencing postoperative wound healing were analyzed. In the minimally invasive surgery group, the intraoperative time was shorter, the anesthesia time was relatively reduced, and the amount of bleeding was significantly reduced. Wounds also take fewer days to heal and have lower rates of wound-related complications. When comparing the pain on 1, 3, and 7 days after surgery, the minimally invasive surgery group had relatively mild pain. Analysis of postoperative wound healing factors showed that minimally invasive surgical methods have a positive impact on healing. In pediatric otolaryngology surgery, minimally invasive surgery performs better than open surgery in terms of intraoperative operation time, anesthesia time, blood loss, wound healing time, complication rate, and postoperative pain. Therefore, minimally invasive surgery may be a safer and more effective surgical method.


Subject(s)
Otolaryngology , Pharynx , Child , Humans , Minimally Invasive Surgical Procedures , Pain, Postoperative , Wound Healing
9.
J Chem Phys ; 159(24)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38146833

ABSTRACT

New six-dimensional ab initio potential energy surfaces (PESs) for the N2-CO2 complex, which involve the stretching vibration of N2 and the Q3 normal mode for the ν3 asymmetric stretching vibration of CO2, were constructed using the CCSD(T)-F12/AVTZ method with midpoint bond functions. Two vibrational averaged 4D interaction potentials were obtained by integrating over the two intramolecular coordinates. It was found that both PESs possess two equivalent T-shaped global minima as well as two in-plane and one out-of-plane saddle points. Based on these PESs, rovibrational bound states and energy levels were calculated applying the radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm. The splitting of the energy levels between oN2-CO2 and pN2-CO2 for the intermolecular vibrational ground state is determined to be only 0.000 09 cm-1 due to the higher barriers. The obtained band origin shift is about +0.471 74 cm-1 in the N2-CO2 infrared spectra with CO2 at the ν3 zone, which coincides with the experimental data of +0.483 74 cm-1. The frequencies of the in-plane geared-bending for N2-CO2 at the ν3 = 0 and 1 states of CO2 turn out to be 21.6152 and 21.4522 cm-1, the latter reproduces the available experimental 21.3793 cm-1 value with CO2 at the ν3 zone. The spectral parameters fitted from the rovibrational energy levels show that this dimer is a near prolate asymmetric rotor. The computed microwave transitions as well as the infrared fundamental and combination bands for the complex agree well with the observed data.

10.
J Virol ; 97(12): e0170023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38009930

ABSTRACT

IMPORTANCE: Porcine epidemic diarrhea virus (PEDV) is a pig coronavirus that causes severe diarrhea and high mortality in piglets, but as no effective drugs are available, this virus threatens the pig industry. Here, we found that the intestinal contents of specific pathogen-free pigs effectively blocked PEDV invasion. Through proteomic and metabolic analyses of the intestinal contents, we screened 10 metabolites to investigate their function and found that linoleic acid (LA) significantly inhibited PEDV replication. Further investigations revealed that LA inhibited viral replication and release mainly by binding with PEDV NSP5 to regulate the PI3K pathway and, in particular, inhibiting AKT phosphorylation. In vivo experiments illustrated that orally administered LA protected pigs from PEDV challenge and severe diarrhea. These findings provide strong support for exploring antiviral drugs for coronavirus treatment.


Subject(s)
Antiviral Agents , Coronavirus Infections , Diarrhea , Linoleic Acid , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary , Linoleic Acid/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Porcine epidemic diarrhea virus/physiology , Proteomics , Swine , Swine Diseases/drug therapy , Virus Replication/drug effects , Antiviral Agents/therapeutic use
11.
Environ Sci Technol ; 57(49): 20595-20604, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38007712

ABSTRACT

Microbial reduction plays a crucial role in Hg redox and the global cycle. Although intracellular Hg(II) reduction mediated by MerA protein is well documented, it is still unclear whether or how bacteria reduce Hg(II) extracellularly without its internalization. Herein, for the first time, we discovered the extracellular reduction of Hg(II) by a widely distributed aerobic marine bacterium Alteromonas sp. KD01 through a superoxide-dependent mechanism. The generation of superoxide by Alteromonas sp. KD01 was determined using 3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide and methyl cypridina luciferin analogue as probes via UV-vis and chemiluminescence detection, respectively. The results demonstrated that Hg(II) reduction was inhibited by superoxide scavengers (superoxide dismutase (SOD) and Cu(NO3)2) or inhibitors of reduced nicotinamide adenine dinucleotide (NADH) oxidoreductases. In contrast, the addition of NADH significantly improved superoxide generation and, in turn, Hg(II) reduction. Direct evidence of superoxide-mediated Hg(II) reduction was provided by the addition of superoxide using KO2 in deionized water and seawater. Moreover, we observed that even superoxide at an environmental concentration of 9.6 ± 0.5 nM from Alteromonas sp. KD01 (5.4 × 106 cells mL-1) was capable of significantly reducing Hg(II). Our findings provide a greater understanding of Hg(II) reduction by superoxide from heterotrophic bacteria and eukaryotic phytoplankton in diverse aerobic environments, including surface water, sediment, and soil.


Subject(s)
Alteromonas , Mercury , Superoxides/metabolism , Alteromonas/metabolism , NAD/metabolism , Bacteria/metabolism , Water
12.
Front Microbiol ; 14: 1250891, 2023.
Article in English | MEDLINE | ID: mdl-37789859

ABSTRACT

Introduction: The accelerated aging of the global population has emerged as a critical public health concern, with increasing recognition of the influential role played by the microbiome in shaping host well-being. Nonetheless, there remains a dearth of understanding regarding the functional alterations occurring within the microbiota and their intricate interactions with metabolic pathways across various stages of aging. Methods: This study employed a comprehensive metagenomic analysis encompassing saliva and stool samples obtained from 45 pigs representing three distinct age groups, alongside serum metabolomics and lipidomics profiling. Results: Our findings unveiled discernible modifications in the gut and oral microbiomes, serum metabolome, and lipidome at each age stage. Specifically, we identified 87 microbial species in stool samples and 68 in saliva samples that demonstrated significant age-related changes. Notably, 13 species in stool, including Clostridiales bacterium, Lactobacillus johnsonii, and Oscillibacter spp., exhibited age-dependent alterations, while 15 salivary species, such as Corynebacterium xerosis, Staphylococcus sciuri, and Prevotella intermedia, displayed an increase with senescence, accompanied by a notable enrichment of pathogenic organisms. Concomitant with these gut-oral microbiota changes were functional modifications observed in pathways such as cell growth and death (necroptosis), bacterial infection disease, and aging (longevity regulating pathway) throughout the aging process. Moreover, our metabolomics and lipidomics analyses unveiled the accumulation of inflammatory metabolites or the depletion of beneficial metabolites and lipids as aging progressed. Furthermore, we unraveled a complex interplay linking the oral-gut microbiota with serum metabolites and lipids. Discussion: Collectively, our findings illuminate novel insights into the potential contributions of the oral-gut microbiome and systemic circulating metabolites and lipids to host lifespan and healthy aging.

13.
Environ Sci Technol ; 57(44): 16895-16905, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37870506

ABSTRACT

Natural organic matter (NOM) exhibits a distinctive electron-donating capacity (EDC) that serves a pivotal role in the redox reactions of contaminants and minerals through the transformation of electron-donating phenolic moieties. However, the ambiguity of the molecular transformation pathways (MTPs) that engender the EDC during NOM oxidation remains a significant issue. Here, MTPs that contribute to EDC were investigated by identifying the oxidized products of phenolic model compounds and NOM samples in direct or mediated electrochemical oxidation (DEO or MEO, respectively) using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). It was found that the oxidation of newly formed phenolic-OH (ArOH) and the oxidative coupling reaction of the phenoxy radical are the main MTPs that directly contribute to EDC, in addition to the transformation of hydroquinones to quinones. Notably, the oxidative coupling reaction of ArOH contributed at least 22-42% to the EDC. Ferulic acid-like structures can also directly contribute to EDC by incorporating H2O into their acrylic substituents. Furthermore, the opening of C rings can indirectly attenuate the EDC through structural alterations in the electron-donating process of NOM. Decarboxylation can either weaken or enhance the EDC depending on the structure of the phenolic moieties in NOM. These findings suggest that the EDC of NOM is a comprehensive result of multiple NOM MTPs, involving not only ArOH oxidation but also the addition of H2O to olefinic bonds and bond-breaking reactions. Our work provides molecular evidence that aids in the comprehension of the multiple EDC-associated transformation pathways of NOM.


Subject(s)
Electrons , Oxidation-Reduction , Mass Spectrometry
14.
Environ Sci Technol ; 57(40): 14994-15003, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37755700

ABSTRACT

Mercury sulfide nanoparticles (HgSNPs), which occur widely in oxic and anoxic environments, can be microbially converted to highly toxic methylmercury or volatile elemental mercury, but it remains challenging to assess their bioavailability. In this study, an Escherichia coli-based whole-cell fluorescent biosensor was developed to explore the bioavailability and microbial activation process of HgSNPs. Results show that HgSNPs (3.17 ± 0.96 nm) trigger a sharp increase in fluorescence intensity of the biosensor, with signal responses almost equal to that of ionic Hg (Hg(II)) within 10 h, indicating high bioavailability of HgSNP. The intracellular total Hg (THg) of cells exposed to HgSNPs (200 µg L-1) was 3.52-8.59-folds higher than that of cells exposed to Hg(II) (200 µg L-1), suggesting that intracellular HgSNPs were only partially dissolved. Speciation analysis using size-exclusion chromatography (SEC)-inductively coupled plasma mass spectrometry (ICP-MS) revealed that the bacterial filtrate was not responsible for HgSNP dissolution, suggesting that HgSNPs entered cells in nanoparticle form. Combined with fluorescence intensity and intracellular THg analysis, the intracellular HgSNP dissolution ratio was estimated at 22-29%. Overall, our findings highlight the rapid internalization and high intracellular dissolution ratio of HgSNPs by E. coli, and intracellular THg combined with biosensors could provide innovative tools to explore the microbial uptake and dissolution of HgSNPs.

15.
FASEB J ; 37(10): e23180, 2023 10.
Article in English | MEDLINE | ID: mdl-37738038

ABSTRACT

Transforming growth factor ß1 (TGF-ß1) performs a critical role in maintaining homeostasis of intestinal mucosa regulation and controls the survival, proliferation, and differentiation of many immune cells. In this study, we discovered that the infection of porcine epidemic diarrhea virus (PEDV), a coronavirus, upregulated TGF-ß1 expression via activating Tregs. Besides, recombinant porcine TGF-ß1 decreased the percentage of CD21+ B cells within the lymphocyte population in vitro. We further found that TGF-ß1 reduced the IgA-secreting B cell numbers and also inhibited plasma cell differentiation. Additional investigations revealed that TGF-ß1 induced the apoptosis of IgM+ B cells in both peyer's patches (PPs) and peripheral blood (PB) through the activation of the Bax/Bcl2-Caspase3 pathway. Conversely, the application of the TGF-ß1 signaling inhibitor SB431542 significantly antagonized the TGF-ß1-induced reduction of IgA secretion and B cell apoptosis and restored plasma cell differentiation. Collectively, TGF-ß1 plays an important role in regulating the survival and differentiation of porcine IgA-secreting B cells through the classical mitochondrial apoptosis pathway. These findings will facilitate future mucosal vaccine designs that target the regulation of TGF-ß1 for the control of enteric pathogens in the pig industry.


Subject(s)
Plasma Cells , Transforming Growth Factor beta1 , Swine , Animals , bcl-2-Associated X Protein , Cell Differentiation , Apoptosis , Immunoglobulin A , Immunoglobulin M
16.
Environ Sci Pollut Res Int ; 30(48): 106502-106513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37730981

ABSTRACT

Periphyton is a ubiquitous niche in aquatic environments and can be a significant source of dissolved organic matter (DOM) production and leaching, especially in such environment as the Everglades, a slow-water flow wetland in Florida, USA. We employed an array of methods, including compositional analysis, 3-dimensional excitation emission matrix (3-D EEM) fluorescence spectroscopy, and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to perform quantitative and qualitative analyses on the DOM produced by periphyton and DOM in surrounding surface water and periphyton overlying water for comparison purposes. Higher dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) contents in periphyton pore water than surface water and periphyton overlying water indicated the remarkable contribution from periphyton-produced DOM. Higher total protein, carbohydrate, and thiol contents in periphyton pore water than in surface water and periphyton overlying water underscored the possibility of periphyton pore water DOM leached from periphyton. These results agreed with 3-D EEM and ATR-FTIR analyses that showed the prevalence of possible microbial source of periphyton pore water DOM as indicated by higher fluorescence index (FI) than surface water and periphyton overlying water. Similarly, the size-fractionated DOM from surface water demonstrated terrestrial sources, and periphyton pore water demonstrated microbial sources regardless of their differences in size based on their FI values. The types of periphyton affect the production and composition of DOM, as evidenced by higher total protein, carbohydrate, and chlorophyll-a (Chl-a) contents in floating mat on the water surface than in epiphyton attached to submerged phytoplankton, probably because the former is photo-synthetically more productive than the latter due to different light availability. This study provided fundamental information on periphyton DOM that is essential for further investigating its role in carbon cycle and its biogeochemistry.


Subject(s)
Periphyton , Water , Dissolved Organic Matter , Organic Chemicals/analysis , Spectrometry, Fluorescence/methods , Carbohydrates
17.
Virology ; 587: 109880, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696054

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) can infect all ages of pigs, particularly newborn piglets with a mortality almost reaching to 80-100%, causing significant economic losses to the global pig industry. The mucosal immune response is crucial for PEDV prevention, in which specific dendritic cells (DCs) and differentiated T cells play vital roles. In this study, CD103+DCs were differentiated successfully with retinoic acid (RA) treatment in vitro. PEDV could not replicate efficiently in differentiated CD103+DCs but could promote maturation of CD103+DCs by up-regulating the expression of SLA-DR, CD1a, CD86, and cytokines of IL-1ß and IL-10. In addition, PEDV-infected CD103+DCs and CD4+T cells were co-cultured, and the results showed that the differentiation of CD4+T cells toward Th1, Tfh, and Treg, but not Th2. These results demonstrate that PEDV-infected CD103+DCs could promote the differentiation of CD4+T cells, which provided the basis for further study of mucosal response induced by PEDV via CD103+DCs.

18.
Front Endocrinol (Lausanne) ; 14: 1191822, 2023.
Article in English | MEDLINE | ID: mdl-37576968

ABSTRACT

Background: Liver resection (LR) and local tumor destruction (LTD) are effective treatments, but not commonly recommended for patients with intermediate/advanced hepatocellular carcinoma (HCC). This study aimed to explore whether LR/LTD could improve overall survival (OS) of these patients, and to identify the patients who will most likely benefit from LR/LTD. Methods: Data of patients with intermediate/advanced HCC between 2001 and 2018 were extracted from Surveillance, Epidemiology, and End Results database. OS was compared between HCC patients who received LR/LTD and those who did not. A nomogram was constructed for predicting OS, and it was then validated. Results: A total of 535 eligible patients were included, among which 128 received LR/LTD while 407 did not. Significantly higher OS in patients who received LR/LTD was observed (P<0.001). Based on independent prognostic factors obtained from univariate and multivariate analyses, a nomogram was constructed. The C-indices of nomogram were higher than those of the TNM staging system (training cohort: 0.74 vs. 0.59; validation cohort: 0.78 vs. 0.61). Similarly, areas under receiver operating characteristic curves and calibration curves indicated good accuracy of the nomogram. Decision curve analysis curves revealed good clinical practicability of the nomogram. Furthermore, low-risk patients (nomogram score: 0-221.9) had higher OS compared with high-risk patients (nomogram score: higher than 221.9) (P<0.001). Conclusion: LR/LTD significantly improves OS in patients with intermediate/advanced HCC. The nomogram developed in the present study shows high predicating value for OS in patients with intermediate/advanced HCC, which might be useful in selecting patients who are most suitable for LR/LTD.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/therapy , Prognosis , Nomograms
19.
Water Res ; 244: 120472, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37619304

ABSTRACT

Liquid elemental mercury droplet (Hg(0)l) is an important species in heavy Hg-contaminated environments. The oxidation processes of Hg(0)l and its related mechanisms are still poorly understood. Herein, for the first time, it was verified that mercurous species [Hg(I)] was an important species in natural water contaminated by Hg(0)l as well as in the simulated dark oxidation of Hg(0)l. The formation and further transformation of Hg(I) controlled the overall oxidation process of Hg(0)l and were affected by different environmental factors. Through kinetic modeling using ACUCHEM program, oxidation of Hg(0) to Hg(I) (Hg(0) â†’ Hg(I)) was determined to be the rate-limiting step in Hg(0)l oxidation because its k value ((8.7 ± 0.21) × 10-11s-1) is seven orders of magnitude lower than that of Hg(I) oxidation (Hg(I) â†’ Hg(II), (4.7 ± 0.15) × 10-4s-1). Ligands like OH-, Cl-, and natural organic matter enhanced the formation of Hg(I) via promoting the constants of comproportionation (up to (9.5 ± 0.78) × 10-4s-1). These findings highlight the importance of Hg(I) in Hg(0)l oxidation process by controlling the transformation kinetics of Hg species, facilitating an improved understanding of the environmental redox cycles of Hg.


Subject(s)
Mercury , Kinetics , Water , Oxidation-Reduction , Anaerobiosis
20.
Soft Matter ; 19(28): 5371-5378, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37409398

ABSTRACT

Poly(D,L-lactic-co-glycolic acid) (PLGA) is one of the most commonly used drug carriers in nanomedicines because of its biodegradability, biocompatibility and low toxicity. However, the physico-chemical characterization and study of drug release are often lacking the investigation of the glass transition temperature (Tg), which is an excellent indicator of drug release behavior. In addition, the residual surfactant used during the synthesis of nanoparticles will change the glass transition temperature. We thus prepared PLGA nanoparticles with polymeric (poly(vinyl alcohol) (PVA)) and ionic (didodecyldimethylammonium bromide (DMAB)) surfactant to investigate their influence on the glass transition temperature. Determination of Tg in dry and wet conditions were carried out. The use of concentrated surfactant during synthesis resulted in a larger amount of residual surfactant in the resulting particles. Increasing residual PVA content resulted in an increase in particle Tg for all but the most concentrated PVA concentrations, while increasing residual DMAB content resulted in no significant change in particle Tg. With the presence of residual surfactant, the Tg of particle and bulk samples measured in wet conditions is much lower than that in dry conditions, except for bulk PLGA containing the ionic surfactant, which may be related to the plasticizing effect of the DMAB molecules. Notably, the Tg of both particles in wet conditions is approaching physiological temperatures where subtle changes in Tg could have dramatic effects on drug release properties. In conclusion, the selection of surfactant and the remaining amount of surfactant are crucial parameters to utilize in designing the physico-chemical properties of PLGA particles.


Subject(s)
Nanoparticles , Pulmonary Surfactants , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglycolic Acid/chemistry , Temperature , Transition Temperature , Surface-Active Agents/chemistry , Glycols , Lactic Acid/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...