Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Food Chem ; 450: 139411, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38653055

ABSTRACT

Fresh strawberries are easily contaminated by microorganisms after picking. Therefore, how to effectively store and keep fresh strawberries has been a hot topic for scientists to study. In this study, we prepared a leaf shaped metal organic framework nanomaterial loaded with quercetin (Quercetin@ZIF-L) at first, which can achieve effective loading of quercetin (96%) within 45 min and has a controlled release effect under acidic conditions. In addition, by cleverly combining satellite graphene oxide @ silver nanoparticles (GO@AgNPs) with slow precipitation performance, Quercetin@ZIF-L/GO@AgNPs nanocomposite film with larger pore size and larger specific surface area was prepared by scraping method. The characterization data of water flux, retention rate, flux recovery rate and water vapor permeability show that the composite film has good physical properties. The experiment of film packaging showed that the fresh life of strawberry could be extended from 3 to 8 days, which significantly improved the storage and freshness cycle of strawberry. At the same time, the metal migration test proved that the residual amount of silver ion in strawberry met the EU standard and zinc ions are beneficial to the health, enriching the types of high-performance fresh-keeping materials and broadening the application.

2.
Foods ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338544

ABSTRACT

Sulforaphane (SFN) is a natural isothiocyanate compound widely abundant in cruciferous vegetables with multiple bioactive functions. However, traditional analytical methods for the extraction and determination of SFN are cumbersome, time-consuming, and low sensitivity with large amounts of organic solvents. Herein, novel magnetic COF-on-COFs (MB-COFs) were fabricated using Fe3O4 as a magnetic core and COFs-1 grown with COFs-2 as a shell, and they were used as efficient adsorbents of magnetic dispersive solid-phase extraction for rapid quantification of SFN in cruciferous vegetables by combining with HPLC-MS/MS. At the optimal ratio of COFs-1 to COFs-2, MB-COFs had a spherical cluster-like structure and a rough surface, with a sufficient magnetic response for rapid magnetic separation (1 min). Due to the introduction of Fe3O4 and COFs-2, MB-COFs exhibited outstanding extraction efficiencies for SFN (92.5-97.3%), which was about 18-72% higher than that of the bare COFs. Moreover, MB-COFs showed good adsorption capacity (Qm of 18.0 mg/g), rapid adsorption (5 min) and desorption (30 s) to SFN, and favorable reusability (≥7 cycles) by virtue of their unique hierarchical porous structure. The adsorption kinetic data were well fitted by the pseudo-second-order, Ritchie-second-order, intra-particle diffusion, and Elovich models, while the adsorption isotherm data were highly consistent with the Langmuir, Temkin, and Redlich-Peterson models. Finally, under the optimized conditions, the developed method showed a wide linear range (0.001-0.5 mg/L), high sensitivity (limits of quantification of 0.18-0.31 µg/L), satisfactory recoveries (82.2-96.2%) and precisions (1.8-7.9%), and a negligible matrix effect (0.82-0.97). Compared to previous methods, the proposed method is faster and more sensitive and significantly reduces the use of organic solvents, which can achieve the efficient detection of large-scale samples in practical scenarios. This work reveals the high practical potential of MB-COFs as adsorbents for efficient extraction and sensitive analysis of SFN in cruciferous vegetables.

3.
Foods ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338608

ABSTRACT

This Special Issue presents a share of the work published in the journal Foods on pesticide residue monitoring and risk assessment in food [...].

4.
Discov Oncol ; 14(1): 156, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37639070

ABSTRACT

BACKGROUND: 3D cancer stem cell (CSC) cultures are widely used as in vitro tumor models. In this study, we determined the effects of enriching HCT116 tumor spheres initially cultured in serum-free medium with different concentrations of serum, focusing on the effect of microserum environment stimulation on extraction and biological function of colorectal cancer stem cells (CCSCs). METHODS: CCSCs were enriched in standard serum-free medium and serum-free medium with different concentrations of serum for 1 week. The expression of CSC-associated markers in CCSCs, and the presence and relative proportion of CSCs (CD133/CD44 cell sorting) were then determined to elucidate the effect of the microserum environment on the preservation of CSC-related features. Further, the tumorigenic capacity of CCSCs was evaluated in an immunodeficiency mouse model. RESULTS: Our data indicated that a significantly greater number of spheres with a greater size range and high viability without drastic alteration in biological and structural features, which maintained self-renewal potential after sequential passages were formed after serum supplementation. Real-time analysis showed that both serum spheres and serum-free spheres displayed similar expression patterns for key stemness genes. Serum spheres showed higher expression of the CSC surface markers CD133 and CD44 than did CSCs spheres cultured in serum-free medium. Adherent cultures in complete medium could adapt to the serum-containing microenvironment faster and showed higher proliferation ability. The addition of serum induced EMT and promoted the migration and invasion of serum globular cells. Compared with serum-free cells and adherent cells, serum spheres showed higher tumor initiation ability. CONCLUSIONS: Microserum environment stimulation could be an effective strategy for reliable enrichment of intact CCSCs, and a more efficient CSC enrichment method.

5.
Ann Transl Med ; 11(9): 321, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37404986

ABSTRACT

Background and Objective: With the development of cytology and genomics, genetically modified immune cells have established their role from principle to clinical applications, achieving outstanding therapeutic effects in hematologic malignancies. However, even though encouraging initial response rates, many patients experience a relapse. In addition, there are still many obstacles preventing the use of genetically modified immune cells in treating solid tumors. Nevertheless, the therapeutic effect of genetically engineered mesenchymal stem cells (EMSCs) in malignant diseases, especially solid tumors, has been widely investigated, and related clinical trials are gradually being carried out. This review aims to describe the progress of gene and cell therapy and the current status of stem cell clinical trials in China. This review focuses on the research and application prospects of genetically engineered cell therapy using chimeric antigen receptor (CAR) T cells and mesenchymal stem cells (MSCs) for cancer. Methods: A literature search of PubMed, SpringerLink, Wiley, Web of Science, and Wanfang database was carried out for published articles on gene and cell therapy up to August 2022. Key Content and Findings: This article reviews the development of gene and cell therapy and the current status of the development of stem cell drugs in China, with a particular focus given to the advent of the novel therapy of EMSCs. Conclusions: Gene and cell therapies have a promising therapeutic effect on many diseases, especially recurrent and refractory cancers. Further development of gene and cell therapy is expected to promote precision medicine and individualized therapy and open a new era of therapy for human diseases.

6.
Plants (Basel) ; 12(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37111903

ABSTRACT

Flowering time is an important trait that determines the breeding process of ornamental plants. The flowering period of lotus (Nelumbo nucifera Gaertn.) is mainly concentrated in June-August. During this period, the weather is hot and there are few tourists, which made many lotus scenic spots difficult to operate. People have a strong demand for early flowering lotus cultivars. In this paper, 30 lotus cultivars with high ornamental value were selected as materials and their phenological periods were observed for two consecutive years in 2019 and 2020. A number of cultivars with early flowering potential and stable flowering periods, such as 'Fenyanzi', 'Chengshanqiuyue', 'Xianghumingyue' and 'Wuzhilian', were screened by K-Means clustering method. The relationship between accumulated temperature and flowering time of 19 lotus cultivars at different growth stages was analyzed. It was found that lotus cultivars with early flowering traits could adapt well to the changes of early environmental temperature and were not affected by low temperature. On the other hand, by analyzing the relationship between different traits and flowering time of three typical cultivars, such as rhizome weight, phenological period, etc., it shows that the nutrient content of the rhizome and the early morphology of plants will affect the flowering time. These results provide a reference for the formation of a systematic lotus early flowering cultivar breeding mechanism and the establishment of a perfect flowering regulation technology system, which can further improve the ornamental value of lotus and promote industrial development.

7.
Front Nutr ; 10: 1109204, 2023.
Article in English | MEDLINE | ID: mdl-36819707

ABSTRACT

At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.

8.
Food Chem X ; 17: 100571, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36845473

ABSTRACT

Tea polyphenols (TPs) are important bioactive compounds in tea and have excellent physiological regulation functions. However, the extraction and purification of TPs are key technologies affecting their further application, and the chemical instability, poor bioavailability of TPs are major challenges for researchers. In the past decade, therefore, research and development of advanced carrier systems for the delivery of TPs has been greatly promoted to improve their poor stability and poor bioavailability. In this review, the properties and function of TPs are introduced, and the recent advances in the extraction and purification technologies are systematically summarized. Particularly, the intelligent delivery of TPs via novel nano-carriers is critically reviewed, and the application of TPs nano-delivery system in medical field and food industry is also described. Finally, the main limitations, current challenges and future perspectives are highlighted in order to provide research ideas for exploiting nano-delivery carriers and their application in TPs.

9.
J Adv Res ; 44: 53-70, 2023 02.
Article in English | MEDLINE | ID: mdl-36725194

ABSTRACT

BACKGROUND: With rapid development in agriculture and industry, water polluted with heavy metallic ions has come to be a serious problem. Adsorption-based methods are simple, efficient, and broadly used to eliminate heavy metals. Conventional adsorption materials have the problems of secondary environmental contamination. Hydrogels are considered effective adsorbents, and those prepared from biopolymers are biocompatible, biodegradable, non-toxic, safe to handle, and increasingly used to adsorb heavy metal ions. AIM OF REVIEW: The natural origin and easy degradability of biopolymer hydrogels make them potential for development in environmental remediation. Its water absorption capacity enables it to efficiently adsorb various pollutants in the aqueous environment, and its internal pore channels increase the specific surface area for adsorption, which can provide abundant active binding sites for heavy metal ions through chemical modification. KEY SCIENTIFIC CONCEPT OF REVIEW: As the most representative of biopolymer hydrogels, polysaccharide-based hydrogels are diverse, physically and chemically stable, and can undergo complex chemical modifications to enhance their performance, thus exhibiting superior ability to remove contaminants. This review summarizes the preparation methods of hydrogels, followed by a discussion of the main categories and applications of polysaccharide-based biopolymer hydrogels.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Hydrogels , Water Pollutants, Chemical/chemistry , Metals, Heavy/chemistry , Biopolymers , Polysaccharides , Ions , Water
10.
Foods ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36613412

ABSTRACT

Imidacloprid is one of the most commonly used insecticides for managing pests, thus, improving the quality and yield of vegetables. The abuse/misuse of imidacloprid contaminates the environment and threatens human health. To reduce the risk, a colorimetric enzyme-linked immunoassay assay (Co-ELISA) and chemiluminescence enzyme-linked immunoassay assay (Cl-ELISA) were established to detect imidacloprid residues in vegetables. The linear range of Co-ELISA ranged between 1.56 µg/L and 200 µg/L with a limit of detection (LOD) of 1.56 µg/L. The values for Cl-ELISA were 0.19 µg/L to 25 µg/L with an LOD of 0.19 µg/L, which are lower than those of Co-ELISA. Fortifying Chinese cabbage, cucumber, and zucchini with imidacloprid at 10, 50, and 100 µg/L yielded recoveries between 81.7 and 117.6% for Co-ELISA and at 5, 10, and 20 µg/L yielded recoveries range from 69.7 to 120.6% for Cl-ELISA. These results indicate that Cl-ELISA has a high sensitivity and a rapid detection time, saving cost (antigen and antibody concentrations) and serving as a more efficient model for the rapid detection of imidacloprid residue.

11.
Plants (Basel) ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679100

ABSTRACT

Self-fertilization rate is an essential index of lotus reproductive system development, and pollen activity is a key factor affecting lotus seed setting rate. Based on cytology and molecular biology, this study addresses the main reasons for the low self-set rate of double lotus. It takes two different double lotus breeds into consideration, namely 'Sijingganshan' with a low self-crossing rate and 'Jinfurong' with a high self-crossing rate. Cytological analysis results showed that the pollen abortion caused by excessive degradation of tapetum during the single phase was the root cause for the low self-mating rate of double lotus. Subsequent transcriptome analysis revealed that the gene NnPTC1 related to programmed tapetum cell death was significantly differentially expressed during the critical period of abortion, which further verified the specific expression of NnPTC1 in anthers. It was found that the expression level of NnPTC1 in 'Sijingganshan' at the mononuclear stage of its microspore development was significantly higher than that of 'Jinfurong' at the same stage. The overexpression of NnPTC1 resulted in the premature degradation of the tapetum and significantly decreased seed setting rate. These results indicated that the NnPTC1 gene regulated the pollen abortion of double lotus. The mechanism causing a low seed setting rate for double lotus was preliminarily revealed, which provided a theoretical basis for cultivating lotus varieties with both flower and seed.

12.
Cell Transplant ; 31: 9636897221139734, 2022.
Article in English | MEDLINE | ID: mdl-36448598

ABSTRACT

Recent studies have shown that the use of mesenchymal stem/stromal cells (MSCs) may be a promising strategy for treating spinal cord injury (SCI). This study aimed to explore the effectiveness of human umbilical cord-derived MSCs (hUC-MSCs) with different administration routes and dosages on SCI rats. Following T10-spinal cord contusion in Sprague-Dawley rats (N = 60), three different dosages of hUC-MSCs were intrathecally injected into rats (SCI-ITH) after 24 h. Intravenous injection of hUC-MSCs (SCI-i.v.) and methylprednisolone reagent (SCI-PC) were used as positive controls (N = 10/group). A SCI control group without treatment and a sham operation group were injected with Multiple Electrolyte Injection solution. The locomotor function was assessed by Basso Beattie Bresnahan (BBB) rating score, magnetic resonance imaging (MRI), histopathology, and immunofluorescence. ELISA was conducted to further analyze the nerve injury and inflammation in the rat SCI model. Following SCI, BBB scores were significantly lower in the SCI groups compared with the sham operation group, but all the treated groups showed the recovery of hind-limb motor function, and rats receiving the high-dose intrathecal injection of hUC-MSCs (SCI-ITH-H) showed improved outcomes compared with rats in hUC-MSCs i.v. and positive control groups. Magnetic resonance imaging revealed significant edema and spinal cord lesion in the SCI groups, and significant recovery was observed in the medium and high-dose hUC-MSCs ITH groups. Histopathological staining showed that the necrotic area in spinal cord tissue was significantly reduced in the hUC-MSCs ITH-H group, and the immunofluorescence staining confirmed the neuroprotection effect of hUC-MSCs infused on SCI rats. The increase of inflammatory cytokines was repressed in hUC-MSCs ITH-H group. Our results confirmed that hUC-MSC administered via intrathecal injection has dose-dependent neuroprotection effect in SCI rats.


Subject(s)
Mesenchymal Stem Cells , Spinal Cord Injuries , Humans , Rats , Animals , Rats, Sprague-Dawley , Spinal Cord Injuries/therapy , Immunologic Factors
13.
Crit Rev Food Sci Nutr ; : 1-29, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36004607

ABSTRACT

Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.

14.
J Tissue Eng Regen Med ; 16(10): 934-944, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35929499

ABSTRACT

Efficient and large-scale expansion of mesenchymal stem/stromal cells (MSCs) has always been a formidable challenge to researchers in cell-based therapies and regenerative medicine. To reconcile major drawbacks of 2D planar culturing system, we innovatively developed an automated closed industrial scale cell production (ACISCP) platform based on GMP-grade microcarrier for culture of umbilical cord-mesenchymal stem/stromal cells (UCMSCs), in accordance with the criteria of stem cell bank. ACISCP system is a fully closed system, which employs different models of vivaSPIN bioreactors (CytoNiche Biotech, China) for scale-up cell culture and vivaPREP (CytoNiche Biotech, China) for automated cell harvesting and cell dosage preparation. To realize industrial scale expansion of UCMSCs, a three-stage expansion was conducted with 1 L, 5 and 15 L vivaSPIN bioreactors. Using 3D TableTrix® and ACISCP system, we inoculated 1.5 × 107 of UCMSCs into 1 L vivaSPIN bioreactor and finally scaled to two 15 L bioreactor. A final yield of 2.09 × 1010 cells with an overall expansion factor of 1975 within 13 days. The cells were harvested, concentrated, washed and prepared automatically with vivaPREP. The entire process was realized with ACISCP platform and was totally enclosed. Critical quality attributes (CQA) assessments and release tests of MSCs, including sterility, safety, purity, viability, identity, stability and potency were performed accordingly. The quality of cells harvested from 3D culture on the ACISCP and conventional 2D planar culture counterpart has no significant difference. This study provides a bioprocess engineering platform, harnessing GMP-grade 3D TableTrix® microcarriers and ACISCP to achieve industrial-scale manufacturing of clinical-grade hMSCs.


Subject(s)
Mesenchymal Stem Cells , Bioreactors , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cell- and Tissue-Based Therapy , Umbilical Cord
15.
Front Plant Sci ; 13: 899212, 2022.
Article in English | MEDLINE | ID: mdl-35783980

ABSTRACT

The soybean aphid poses a severe threat to soybean quality and yield by sucking phloem sap and transmitting plant viruses. An early-maturing and highly resistant soybean landrace, Fangzheng Moshidou, with markedly reduced aphid colonization has been identified by screening of aphid-resistant soybean accessions. In a population derived from the cross of Fangzheng Moshidou with the susceptible cultivar Beifeng 9, resistance was conferred by a single dominant gene. Three linked markers, Satt114, Satt334, and Sct_033, on chromosome 13 were identified by bulked-segregant analysis. Additional simple-sequence repeat and single-nucleotide polymorphism (SNP) markers were developed for gene mapping. The resistance of Fangzheng Moshidou was fine-mapped to the interval between the SNP markers YCSNP20 and YCSNP80, corresponding to 152.8 kb in the Williams 82 assembly 2 genome. This region was near the reported loci Rag2 and Rag5 but did not overlap the interval containing them. A unique haplotype is described for Fangzheng Moshidou that distinguishes it from soybean accessions PI 587972, PI 594879, and PI 567301B in the interval containing Rag2 and Rag5. These results indicate that Fangzheng Moshidou harbors a novel gene at a tightly linked resistance locus, designated as RagFMD. Fourteen candidate genes were annotated in the fine-mapping region, including seven NBS-LRR genes, which are usually considered resistance genes in plant defense. Most of these candidate genes showed variations distinguishing the resistant and susceptible parents and some genes also showed differences in expression between the two parental lines and at several times after aphid infestation. Isolation of RagFMD would advance the study of molecular mechanisms of soybean aphid resistance and contribute to precise selection of resistant soybeans.

16.
ACS Omega ; 7(23): 19930-19938, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721897

ABSTRACT

A green method for synthesizing Pd nanoparticles/graphene composites from a choline chloride-oxalic acid deep eutectic solvent (DES) without a reducing agent or a surfactant is reported. Deep eutectic solvents are usually composed of halide salts and hydrogen-bond donors, and many are biocompatible and biodegradable. The merits of deep eutectic solvents include that they serve as reducing agents and dispersants, and Pd nanoparticles are tightly anchored to graphene. The size and dispersion of Pd particles are improved when supercritical carbon dioxide (scCO2) is used because it has gaslike diffusivity and near-zero surface tension, which results in excellent wettability between the scCO2 and the carbon surface. The prepared sc-Pd NPs/GR/SPCE shows excellent activity toward glycerol oxidation compared to composites not fabricated by scCO2 processes. This study demonstrates the potential of using this scCO2-assisted protocol combined with deep eutectic solvents to further construct nanoparticles/graphene composites.

17.
Front Nutr ; 9: 841257, 2022.
Article in English | MEDLINE | ID: mdl-35656156

ABSTRACT

Cruciferous vegetables are rich in glucosinolates, which can be metabolized to produce the antitumor compound indole-3-carbinol (I3C). The conventional solvent extraction method for I3C is inefficient. To improve the extraction efficiency of I3C from cruciferous vegetables, we prepared a metal-organic framework (MOF) material (Fe3O4@Zn-Al-LDH@B-D-MIL-100). First, Fe3O4 nanoparticles were introduced to layered double hydroxides by in situ polymerization. Then, the MOF material was grown on the surface of the layered double hydroxide by co-precipitation and the layer-by-layer self-assembly method. This gave Fe3O4@Zn-Al-LDH@B-D-MIL-100, which was characterized using a variety of techniques. The results showed that Fe3O4@Zn-Al-LDH@B-D-MIL-100 had a double-layer porous structure, excellent superparamagnetism (11.54955 emu/g), a large specific surface area (174.04 m2/g), and a pore volume (0.26 cm3/g). The extraction conditions for I3C were optimized. Non-linear fitting of the static adsorption model showed that the adsorption was mainly monolayer. Fe3O4@Zn-Al-LDH@B-D-MIL-100 had fast adsorption kinetics and could extract 95% of I3C in 45 min. It is superior to the traditional solvent extraction method because of its high enrichment efficiency in a short time and environmental friendliness. The successful preparation of the new nanomaterial will provide a new reference for the enrichment and extraction of the I3C industry.

18.
Food Chem ; 393: 133337, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35653990

ABSTRACT

Based on the mussel-inspired adhesive interface (Fe3O4-g-C3N4@PDA), a novel bionic metal-organic framework (Fe3O4-g-C3N4-PDA@MIL-101) was successfully prepared. The composite featured a high specific surface area and a multi-microchannel structure, as well as strong thermochemical stability. The structural property of Fe3O4-g-C3N4-PDA@MIL-101(Fe) was characterized, and the results indicated that Fe3O4, PDA, and MIL-101(Fe) were uniformly coated on the g-C3N4 surface. The adsorption and desorption of organophosphorus pesticides with Fe3O4-g-C3N4-PDA@MIL-101(Fe) were evaluated by batch experiments. This composite showed high adsorption efficiency and selective removal of coralox, phosalone, and chlorpyrifos. Under the optimal conditions, three organophosphorus pesticides were adsorbed from Chinese cabbage and green onion samples with Fe3O4-g-C3N4-PDA@MIL-101(Fe). The analytical method exhibited high sensitivity (LOD, 0.19-2.34 µg/L; LOQ, 0.65-7.82 µg/L), excellent practicality, and good stability, suggesting that Fe3O4-g-C3N4-PDA@MIL-101 was an ideal candidate magnetic adsorbent for the removal of organophosphorus pesticides in Chinese cabbage and green onion samples.


Subject(s)
Brassica , Metal-Organic Frameworks , Pesticides , Water Pollutants, Chemical , Adhesives , Adsorption , China , Metal-Organic Frameworks/chemistry , Onions , Organophosphorus Compounds , Pesticides/analysis , Water Pollutants, Chemical/analysis
19.
J Adv Res ; 37: 61-74, 2022 03.
Article in English | MEDLINE | ID: mdl-35499055

ABSTRACT

Background: Organophosphorus pesticides (OPs), as insecticides or acaricides, are widely used in agricultural products to ensure agricultural production. However, widespread use of OPs leads to environmental contamination and significant negative consequences on biodiversity, food security, and water resources. Therefore, developing a sensitive and rapid method to determine OPs residues in different matrices is necessary. Originally, the enzyme inhibition methods are often used as preliminary screens of OPs in crops. Many studies on the characteristic of Au nanomaterials have constantly been emerging in the past decade. Combined with anisotropic Au nanomaterials, enzyme inhibition methods have the advantages of high sensitivity, durability, and high stability. Aim of Review: This review aims to summarize the principles and strategies of gold (Au) nanomaterials in enzyme inhibition methods, including colorimetric (dispersion, particle size of Au nanomaterials) and fluorometric (fluorescence energy transfer, internal filtration effect) detection, and electrochemical sensing system (shape of Au nanomaterials, Au nanomaterials combined with other nanomaterials). The application of enzyme inhibition in agricultural products and research progress was also outlined. Next, this review illustrates the advantages of Au nanomaterial-based enzyme inhibition methods compared with conventional enzyme inhibition methods. The detection limits and linear range of colorimetric and fluorometric detection and electrochemical biosensors have also been provided. At last, key perspectives, trends, gaps, and future research directions are proposed. Key Scientific Concepts of Review: Herein, we introduced the technology of enzyme inhibition method based on Au nanomaterials for onsite and infield rapid detection of organophosphorus pesticide.


Subject(s)
Biosensing Techniques , Nanostructures , Pesticides , Agriculture , Biosensing Techniques/methods , Organophosphorus Compounds , Pesticides/analysis
20.
Front Nutr ; 9: 846333, 2022.
Article in English | MEDLINE | ID: mdl-35284432

ABSTRACT

The demand for Chinese chives is growing as they are also rich in vitamins, fiber, and sulfur nutrients. Chinese chives should be sprayed with imidacloprid to control pests and diseases to safeguard their yield and to meet the demands of East Asian consumers for Chinese chives. Overspraying of imidacloprid can lead to residues in Chinese chives, posing a severe risk to human health. To reduce the harmful effects of imidacloprid residues on humans, we investigated the imidacloprid dissipation pattern and the final residue on Chinese chives using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Good linearity (R 2= 0.9988), accuracy (expressed as recovery % of 78.34-91.17%), precision [expressed as relative SDs (RSDs) of 0.48-6.43%], and sensitivity [a limit of quantification (LOQ) ≤ 8.07 × 104 mg/kg] were achieved. The dissipation dynamics were consistent with the first-order kinetics, with a half-life of 2.92 days. The final residual levels on Chinese chives were 0.00923-0.166 mg/kg, which is lower than the maximum residue limits (MRLs) of 1 mg/kg for imidacloprid on Chinese chives. A risk assessment index of <1 indicates that Chinese chives are safe for consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...