Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
J Agric Food Chem ; 72(30): 16867-16876, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39021280

ABSTRACT

Synthetic aromatic esters, widely employed in agriculture, food, and chemical industries, have become emerging environmental pollutants due to their strong hydrophobicity and poor bioavailability. This study attempted to address this issue by extracellularly expressing the promiscuous aminopeptidase (Aps) from Pseudomonas aeruginosa GF31 in B. subtilis, achieving an impressive enzyme activity of 13.7 U/mg. Notably, we have demonstrated, for the first time, the Aps-mediated degradation of diverse aromatic esters, including but not limited to pyrethroids, phthalates, and parabens. A biochemical characterization of Aps reveals its esterase properties and a broader spectrum of substrate profiles. The degradation rates of p-nitrobenzene esters (p-NB) with different side chain structures vary under the action of Aps, showing a preference for substrates with relatively longer alkyl side chains. The structure-dependent degradability aligns well with the binding energies between Aps and p-NB. Molecular docking and enzyme-substrate interaction elucidate that hydrogen bonding, hydrophobic interactions, and π-π stacking collectively stabilize the enzyme-substrate conformation, promoting substrate hydrolysis. These findings provide new insights into the enzymatic degradation of aromatic ester pollutants, laying a foundation for the further development and modification of promiscuous enzymes.


Subject(s)
Aminopeptidases , Bacterial Proteins , Esters , Molecular Docking Simulation , Pseudomonas aeruginosa , Hydrolysis , Esters/metabolism , Esters/chemistry , Aminopeptidases/metabolism , Aminopeptidases/chemistry , Aminopeptidases/genetics , Substrate Specificity , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Pseudomonas aeruginosa/enzymology , Biodegradation, Environmental , Kinetics , Bacillus subtilis/enzymology , Phthalic Acids/chemistry , Phthalic Acids/metabolism
2.
Food Chem ; 455: 139706, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824723

ABSTRACT

An organic-inorganic hybrid nanoprobe, namely LML-D-SBA@Eu3+-Gd3+, was constructed, with SBA-15 acting as the carrier material, and luminol and Eu3+ acting as fluorescence channels to achieve ratiometric signals that eliminate external interference (accurate detection). Gd3+ was used as a sensitizer to amplify the red emission of Eu3+ (ultrasensitive detection). In TCs detection, the luminol emission at 428 nm was quenched due to the photoinduced electron transfer mechanism, and the Eu3+ emission at 617 nm was sensitized due to the synergistic energy transfer from TCs and Gd3+ to Eu3+. The fluorescence intensity at 617 and 428 nm showed ratiometric changes as indicated by notable color changes from blue to red. The detection limits for TC and OTC were 0.21 and 0.08 ng/mL, respectively. To realize a facile, rapid, and cost-effective detection, we constructed a portable intelligent sensing platform based on smartphones, and it demonstrated great potential for on-site detection of TCs.


Subject(s)
Anti-Bacterial Agents , Europium , Luminol , Silicon Dioxide , Smartphone , Tetracycline , Luminol/chemistry , Silicon Dioxide/chemistry , Europium/chemistry , Anti-Bacterial Agents/analysis , Tetracycline/analysis , Tetracycline/chemistry , Gadolinium/chemistry , Food Contamination/analysis , Limit of Detection , Spectrometry, Fluorescence/methods , Porosity
3.
Int J Biol Macromol ; 262(Pt 2): 130196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360223

ABSTRACT

Sea water desalination is regarded as a major solution that could alleviate the water scarcity problem. Reverse osmosis (RO) is typically employed to recover fresh water from sea and brackish water via economical means. RO membrane fouling remains a critical issue restricting their widespread application. In this work, a tertiary thiophenal quaternary ammonium salt-based antibacterial agent was covalently reacted with cellulose acetate (CA) to obtain contact-active antibacterial quaternized CA-RO membrane (QCA-RO). The membrane was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle testing, and X-ray diffraction spectroscopy. The obtained QCA-RO membrane displayed good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus and had bactericidal rates of 99 % in the presence of visible light. Results showed that embedding the quaternary ammonium salt did not cause any significant changes to the morphology, mechanical performance, and thermal stability of the RO membrane. The method described in this work not only produces QCA-RO membranes with good anti-biofilm performance but also presents great potential in seawater desalination.


Subject(s)
Biofouling , Cellulose/analogs & derivatives , Water Purification , Biofouling/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Seawater/chemistry , Quaternary Ammonium Compounds , Osmosis , Membranes, Artificial , Water Purification/methods
4.
BMC Cardiovasc Disord ; 24(1): 3, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166569

ABSTRACT

BACKGROUND: Aslanger's pattern in electrocardiogram (ECG) indicates that patients may have acute inferior myocardial infarction(AMI) with concomitant critical stenoses on other coronary arteries, which needs to be evaluated the timing of revascularization as risk equivalents of ST elevation myocardial infarction(STEMI). CASE PRESENTATION: The patient was a 62-year-old male with chief complaint of intermittent exertional subxiphoid pain for 20 days from 30th June. One day after the last episode (19th July), the 18-lead electrocardiogram showed ST segment elevation of 0.05-0.1mV in lead III, ST segment depression in leads I, avL, and V2-V6, T wave inversion with positive terminal vector in lead V4-V5, and positive T wave in lead V6, which indicated Aslanger's pattern. With increased Troponin I (0.162ng/mL, 0-0.02), The patient was diagnosed as acute non-ST-segment elevation myocardial infarction (NSTEMI) and admitted to coronary ward on 20th July. The coronary angiography showed 95% stenosis in the distal left main coronary artery (LM) to the ostium of the left anterior descending artery (LAD), 90% stenosis in the proximal segment of the LAD, and 80% stenosis in the middle segment of the LAD, and TIMI blood flow was graded score 2. Three drug-eluting stents were implanted at the lesions. The patient's ECG returned close to normal one month after revascularization. CONCLUSION: We presented an acute coronary syndrome case whose ECG showed with Aslanger's pattern (i.e., isolated ST-segment elevation in lead III, associated ST-segment depression in lead V4-V6 with positive T wave/terminal vector, and greater ST-segment elevation in lead V1 than in lead V2), and was confirmed severe stenosis of the LM and the proximal segment of the LAD via coronary angiography. In clinical practice, especially in the emergency, patients with ECG presenting Aslanger's pattern should be urgently evaluated with prompt treatment, and the timing of emergency coronary angiography and revascularization should be evaluated to avoid adverse outcomes caused by delayed treatment.


Subject(s)
Myocardial Infarction , Non-ST Elevated Myocardial Infarction , ST Elevation Myocardial Infarction , Male , Humans , Middle Aged , Constriction, Pathologic , Myocardial Infarction/complications , Myocardial Infarction/diagnosis , Myocardial Infarction/therapy , Non-ST Elevated Myocardial Infarction/diagnostic imaging , Non-ST Elevated Myocardial Infarction/etiology , Coronary Angiography , Electrocardiography , Arrhythmias, Cardiac
5.
Int J Biol Macromol ; 260(Pt 1): 129501, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224803

ABSTRACT

Wound infection and adhesion are important factors affecting wound healing. Early detection of pathogen infection and reduction of wound-to-dressing adhesion are critical for improving wound healing. Herein, Ester-J, which can rapidly respond to lipase secreted by bacteria, was designed and synthesized. Then, Ester-J was co-spun with poly(lactic-co-glycolic acid) (PLGA) and polydimethylsiloxane (PDMS) to prepare a PP-EsJ hydrophobic anti-adhesion dressing with a contact angle of 140.7°. When the PP-EsJ membrane came into contact with the bacteria, the loaded Ester-J was hydrolyzed to Tph-TSF-OH, releasing bright cyan-blue fluorescence, thus providing a fluorescence switch for an early warning of infection. The detection limits of PP-EsJ for Pseudomonas aeruginosa and Staphylococcus aureus were 1.0 × 105 and 1.0 × 106 CFU/mL, respectively. Subsequently, Tph-TSF-OH released 1O2 through light irradiation, which rapidly killed P. aeruginosa and S. aureus, and accelerated wound healing. Compared with the control group, enhanced wound closure (up to 99.80 ± 1.10 %) was observed in mice treated with the PP-EsJ membrane. The PP-EsJ membrane not only effectively reduced the risk of external infection but also reduced adhesions to the skin during dressing changes. These characteristics make PP-EsJ membranes potentially useful for clinical treatment.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Mice , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Staphylococcus aureus , Glycols , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Tissue Adhesions , Bacteria , Bandages , Dimethylpolysiloxanes , Esters
6.
Biosens Bioelectron ; 242: 115744, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37826879

ABSTRACT

In this study, we developed a fluorescent sensor for the sensitive detection of multiple pathogenic bacteria based on magnetic separation, fluorescent probes, and smartphone image processing. A microchannel device was assembled using high-transparency resin and 3D printing technology. This device was combined with a smartphone and an external lens to develop a fluorescent sensor for autonomous detection of multiple pathogenic bacteria. Three fluorescence probes with different fluorescence were synthesized from highly specific aptamers and tetraphenylethylene derivatives. These fluorescent probes can make Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa emit different colors of fluorescence. Using the enrichment performance of molecularly imprinted materials, separation and detection of bacteria can be achieved simultaneously. Finally, with the Red-Green-Blue (RGB) analysis functionality of a smartphone, real-time field detection was realized with a sensitivity of 102 CFU/mL and a detection time of 40 min. This work provides a simple, inexpensive, and real-time sensor for the detection of multiple pathogens in medical diagnostics, food testing, and environmental analyses.


Subject(s)
Biosensing Techniques , Smartphone , Fluorescent Dyes , Spectrometry, Fluorescence/methods , Escherichia coli , Bacteria , Limit of Detection
7.
Food Funct ; 14(18): 8291-8308, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37602757

ABSTRACT

Pterostilbene, an important analogue of the star molecule resveratrol and a novel compound naturally occurring in blueberries and grapes, exerts a significant neuroprotective effect on cerebral ischemia/reperfusion (I/R), but its mechanism is still unclear. This study aimed to follow the molecular mechanisms behind the potential protective effect of pterostilbene against I/R induced injury. For fulfilment of our aim, we investigated the protective effects of pterostilbene on I/R injury caused by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. Machine learning models and molecular docking were used for target exploration and validated by western blotting. Pterostilbene significantly reduced the cerebral infarction volume, improved neurological deficits, increased cerebral microcirculation and improved blood-brain barrier (BBB) leakage. Machine learning models confirmed that the stroke target MMP-9 bound to pterostilbene, and molecular docking demonstrated the strong binding activity. We further found that pterostilbene could depolymerize stress fibers and maintain the cytoskeleton by effectively increasing the expression of the non-phosphorylated actin depolymerizing factor (ADF) in the early stage of I/R. In the late stage of I/R, pterostilbene could activate the Wnt pathway and inhibit the expression of MMP-9 to decrease the degradation of the extracellular basement membrane (BM) and increase the expression of junction proteins. In this study, we explored the protective mechanisms of pterostilbene in terms of both endothelial cytoskeleton and extracellular matrix. The early and late protective effects jointly maintain BBB stability and attenuate I/R injury, showing its potential to be a promising drug candidate for the treatment of ischemic stroke.


Subject(s)
Reperfusion Injury , Stroke , Humans , Matrix Metalloproteinase 9/genetics , Blood-Brain Barrier , Molecular Docking Simulation , Cerebral Infarction , Ischemia , Reperfusion , Reperfusion Injury/drug therapy , Basement Membrane
8.
Drug Des Devel Ther ; 17: 2287-2301, 2023.
Article in English | MEDLINE | ID: mdl-37551408

ABSTRACT

Purpose: Dispelling dampness, relieving turbidity and dredging collaterals decoction (DED), is a traditional Chinese medicine used in the treatment of hyperuricemia. We aimed to explore the effect and mechanism of DED in the treatment of hyperuricemia. Methods: The effects of DED (9.48, 4.74, and 2.37 g/kg/d) on potassium oxonate (750 mg/kg/d)-induced hyperuricemia in rats were evaluated by serum uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), and renal pathological changes. Network pharmacology was used to identify the effective components and targets of DED, and the key targets and signaling pathways for its effects on hyperuricemia were screened. Molecular docking was used to predict the action of DED. H&E, immunohistochemistry, WB, and PCR were used to validate the network pharmacology results. Results: DED can effectively alleviate hyperuricemia, inhibit UA, CRE, BUN, and xanthine oxidase (XOD) activity, and reduce renal inflammatory cell infiltration and glomerular atrophy. The experiment identified 27 potential targets of DED for hyperuricemia, involving 9 components: wogonin, stigmasterol 3-O-beta-D-glucopyranoside, 3ß-acetoxyatractylone, beta-sitosterol, stigmasterol, diosgenin, naringenin, astilbin, and quercetin. DED can relieve hyperuricemia mainly by inhibiting RAGE, HMGB1, IL17R, and phospho-TAK1, and by regulating the AGE-RAGE and IL-17 signaling pathways. Conclusion: DED can alleviate hyperuricemia by inhibiting XOD activity and suppressing renal cell apoptosis and inflammation via the AGE-RAGE signaling pathway and IL-17 signaling pathway. This study provides a theoretical basis for the clinical application of DED.


Subject(s)
Hyperuricemia , Rats , Animals , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Interleukin-17/metabolism , Uric Acid , Molecular Docking Simulation , Kidney , Xanthine Oxidase/metabolism , Xanthine Oxidase/pharmacology
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123068, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37393676

ABSTRACT

The organic-inorganic hybrid material was prepared by embedding 2-amino-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one (RBH) onto mesoporous SBA-15 silica and coordinating it with Al3+ (RBH-SBA-15-Al3+). RBH-SBA-15-Al3+ was used for the selective and sensitive detection of tetracycline antibiotics (TAs) in aqueous media based on the binding site-signaling unit mechanism, in which Al3+ acted as the binding site and the fluorescence intensity at 586 nm as the response signal. The addition of TAs to RBH-SBA-15-Al3+ suspensions resulted in the formation of RBH-SBA-15-Al3+-TAs conjugates, which realized the electron transfer process and turned-on fluorescence signal at 586 nm. The detection limits for tetracycline (TC), oxytetracycline, and chlortetracycline were 0.06, 0.06, and 0.03 µM, respectively. Meanwhile, the detection of TC was feasible in real samples, such as tap water and honey. In addition, RBH-SBA-15 can operate as a TRANSFER logic gate by using Al3+ and TAs as input signals and the fluorescence intensity at 586 nm as output signal. This study proposes an efficient strategy for the selective detection of target analytes by introducing interaction sites (e.g. Al3+) with target analytes in the system.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Rhodamines , Fluorescence , Silicon Dioxide/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL