Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Fluoresc ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888659

ABSTRACT

The current model offers valuable insights for materials science, heat exchangers, renewable energy production, nanotechnology, manufacturing, medicinal treatments, and environmental engineering. The findings of this study have the potential to improve material design, increase heat transfer efficiency across various systems, enhance energy conversion processes, and drive advancements in nanotechnology, medicinal treatments, and engineering design. The goal of the current research is to analyze the effects of thermal radiation and the volume fraction of nanoparticles in MoS2-Ag/engine oil-based hybrid nanofluid flow passing through a cylinder. After performing a substantial similarity transformation, the nonlinear dimensionless framework is recast as ODEs. The Yamada-Ota and Xue models are then applied to the dimensionless equation setup, which is numerically solved using the BVP4C approach. The resulting velocity and temperature fields, corresponding to various parameters, are examined and compared across both models. This investigation demonstrates a significant variation in heat transfer rates between the Yamada-Ota and Xue models, with the former having a larger impact. The velocity and temperature fields decrease as the magnetic field parameter increases in both nanofluids. However, as the magnetic field parameter values grow, the velocity fields in the two nanofluids behave differently. The Yamada-Ota and Xue models are used to determine the behavior of the hybrid nanofluid flow over a nonlinear extended cylinder. In all situations, the velocity and temperature fields exhibit superior decay characteristics.

2.
Natl Sci Rev ; 11(5): nwae113, 2024 May.
Article in English | MEDLINE | ID: mdl-38698903

ABSTRACT

Precise and efficient therapy of malignant tumors is always a challenge. Herein, gold nanoclusters co-modified by aggregation-induced-emission (AIE) molecules, copper ion chelator (acylthiourea) and tumor-targeting agent (folic acid) were fabricated to perform AIE-guided and tumor-specific synergistic therapy with great spatio-temporal controllability for the targeted elimination and metastasis inhibition of malignant tumors. During therapy, the functional gold nanoclusters (AuNTF) would rapidly accumulate in the tumor tissue due to the enhanced permeability and retention effect as well as folic acid-mediated tumor targeting, which was followed by endocytosis by tumor cells. After that, the overexpressed copper ions in the tumor cells would trigger the aggregation of these intracellular AuNTF via a chelation process that not only generated the photothermal agent in situ to perform the tumor-specific photothermal therapy damaging the primary tumor, but also led to the copper deficiency of tumor cells to inhibit its metastasis. Moreover, the copper ions were reduced to cuprous ions along with the chelation, which further catalysed the excess H2O2 in the tumor cells to produce cytotoxic reactive oxygen species, resulting in additional chemodynamic therapy for enhanced antitumor efficiency. The aggregation of AuNTF also activated the AIE molecules to present fluorescence, which not only imaged the therapeutic area for real-time monitoring of this tumor-specific synergistic therapy, but also allowed us to perform near-infrared radiation at the correct time point and location to achieve optimal photothermal therapy. Both in vitro and in vivo results revealed the strong tumor elimination, effective metastasis inhibition and high survival rate of tumor-bearing mice after treatment using the AuNTF nanoclusters, indicating that this AIE-guided and tumor-specific synergistic strategy could offer a promising approach for tumor therapy.

3.
Langmuir ; 39(38): 13735-13747, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37703208

ABSTRACT

The role of surfactants in the flow of a droplet driven by a pressure gradient through a constricted microchannel is simulated by using our recently developed lattice Boltzmann method. We first study the surfactant role on a droplet flowing through a microchannel with a shrunken square section under different surfactant concentrations and capillary numbers (i.e., imposed pressure gradients). As the surfactant concentration increases, the droplet flow regime first changes from the flow regime I of the droplet getting stuck at the entrance of the constricted channel to the flow regime II of the droplet flowing through the constricted channel with breakup, and then to the flow regime III of the droplet flowing through the constricted channel without breakup. As the capillary number increases, the surfactant role on the number of mother droplets breaking up and the time of mother droplets completely flowing through the constricted section tend to decrease, suggesting that the surfactant effects are gradually weakened. Then, a phase diagram describing how the surfactant concentration and capillary number affect the droplet flow regime is presented. As the surfactant concentration increases, the critical capillary number that distinguishes droplet flow regimes I from II gradually decreases, while the critical capillary number that distinguishes droplet flow regimes II from III first increases and then decreases.

4.
Langmuir ; 39(28): 9808-9815, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37420202

ABSTRACT

We investigate experimentally the effects of pore size, surface wettability, and penetration mode on the characteristics of liquid penetration through meshes. Utilizing the impact of droplets and the hydrostatic pressure, we study water penetration through superhydrophobic, hydrophobic, superhydrophilic, and hydrophilic meshes with different uniform radii and pitch values of the pores. In the case of dynamic penetration enabled by the droplet impact, our results show that surface wettability has a negligible effect on either the threshold speed of the droplet penetration or the penetrating liquid mass. The threshold droplet speed is found to be mainly determined by the synergistic effects of global and local dynamic pressures of the impacting droplet, and a modified expression for the threshold droplet speed is proposed. For the quasi-static penetration based on the applied hydrostatic pressure, we find that surface wettability and pore pitch do not affect the penetration threshold pressure but do affect the pressure at which the liquid penetration ceases. This is due to the fact that under quasi-static conditions, the droplet liquid spreads out and merges with that at the adjacent pores on the mesh underside, affecting the wetted area and, hence, the capillary pressure resisting penetration.

5.
Langmuir ; 38(11): 3453-3468, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35274953

ABSTRACT

Colloidal particles known to be capable of stabilizing fluid-fluid interfaces have been widely applied in emulsion preparation, but their precise role and underlying influencing mechanism remain poorly understood. In this study, a perturbed liquid column with particles evenly distributed on its surface is investigated using a three-dimensional lattice Boltzmann method, which is built upon the color-gradient two-phase flow model but with a new capillary force model and a momentum exchange method for particle dynamics. The developed method is first validated by simulating the wetting behavior of a particle on a fluid interface and the classic Rayleigh-Plateau instability and is then used to explore the effects of particle concentration and contact angle on the capillary instability of the particle-laden liquid column. It is found that increasing the particle concentration can enhance the stability of the liquid column and thus delay the breakup, and the liquid column is most stable under slightly hydrophobic conditions, which corresponds to the lowest initial liquid-gas interfacial free energy. Due to different pressure gradients inside and outside the liquid column and the capillary force being directed away from the neck, hydrophobic particles tend to assemble in a less compact manner near the neck of the deformed liquid column, while hydrophilic particles prefer to gather far away from the neck. For hydrophobic particles, in addition to the influence of the initial liquid-gas interfacial free energy, the self-assembly of particles in a direction opposite to the liquid flow also contributes to opposing the rupture of the liquid column.

6.
Phys Rev E ; 104(1-2): 015310, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412346

ABSTRACT

A numerical method for simulating three-phase flows with moving contact lines on arbitrarily complex surfaces is developed in the framework of the lattice Boltzmann method. In this method, the immiscible three-phase flow is modeled through a multiple-relaxation-time color-gradient model, which not only allows for a full range of interfacial tensions but also produces stable outcomes for a wide range of viscosity ratios. A characteristic line model is introduced to implement the wetting boundary condition, which is not only easy to implement but is also able to handle arbitrarily complex boundaries with prescribed contact angles. The developed method is first validated by the simulation of a Janus droplet resting on a flat surface, a perfect Janus droplet deposited on a cylinder, and the capillary intrusion of ternary fluids for various viscosity ratios. It is then used to study a compound droplet subject to a uniform incoming flow passing through a multipillar structure, where three different values of surface wettability are considered. The simulated results show that the surface wettability has significant impact on the droplet dynamic behavior and final fluid distribution.

7.
Phys Rev E ; 99(6-1): 063306, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330728

ABSTRACT

Within the phase-field framework, we present an accurate and robust lattice Boltzmann (LB) method for simulating contact-line motion of immiscible binary fluids on the solid substrate. The most striking advantage of this method lies in that it enables us to handle two-phase flows with mass conservation and a high density contrast of 1000, which is often unavailable in the existing multiphase LB models. To simulate binary fluid flows, the present method utilizes two LB evolution equations, which are respectively used to solve the conservative Allen-Cahn equation for interface capturing, and the incompressible Navier-Stokes equations for hydrodynamic properties. Besides, to account for the substrate wettability, two popular contact angle models including the cubic surface-energy model and the geometrical one are incorporated into the present method, and their performances are numerically evaluated over a wide range of contact angles. The contact-angle hysteresis effect, which is inherent to a rough or chemically inhomogeneous substrate, is also introduced in the present LB approach through the strategy proposed by Ding and Spelt [J. Fluid Mech. 599, 341 (2008)10.1017/S0022112008000190]. The present method is first validated by simulating droplet spreading and capillary intrusion on the ideal or smooth pipes. It is found that the cubic surface-energy and geometrical wetting schemes both offer considerable accuracy for predicting a static contact angle within its middle region, while the former is more stable at extremely small contact angles. Besides, it is shown that the geometrical wetting scheme enables us to obtain better accuracy for predicting dynamic contact points in capillary pipe. Then we use the present LB method to simulate the droplet shearing processes on a nonideal substrate with contact angle hysteresis. The geometrical wetting model is found to be capable of reproducing four typical motion modes of contact line, while the surface-energy wetting scheme fails to predict the hysteresis behaviors in some cases. At last, a complex contact-line dynamic problem of three-dimensional microscale droplet impact on a wettable solid is simulated, and it is found that the numerical results for droplet shapes agree well with the experimental data.

8.
Langmuir ; 35(24): 7858-7870, 2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31120757

ABSTRACT

Surfactants are widely used in many industrial processes, where the presence of surfactants not only reduces the interfacial tension between fluids but also alters the wetting properties of solid surfaces. To understand how the surfactants influence the droplet motion on a solid surface, a hybrid method for interfacial flows with insoluble surfactants and contact-line dynamics is developed. This method solves immiscible two-phase flows through a lattice Boltzmann color-gradient model and simultaneously solves the convection-diffusion equation for surfactant concentration through a finite difference method. In addition, a dynamic contact angle formulation that describes the dependence of the local contact angle on the surfactant concentration is derived, and the resulting contact angle is enforced by a geometrical wetting condition. Our method is first used to simulate static contact angles for a droplet resting on a solid surface, and the results show that the presence of surfactants can significantly modify surface wettability, especially when the surface is more hydrophilic or more hydrophobic. This is then applied to simulate a surfactant-laden droplet moving on a substrate subject to a linear shear flow for varying effective capillary number ( Cae), Reynolds number ( Re), and surface wettability, where the results are often compared with those of a clean droplet. For varying Cae, the simulations are conducted by considering a neutral surface. At low values of Cae, the droplet eventually reaches a steady deformation and moves at a constant velocity. In either a clean or surfactant-laden case, the moving velocity of the droplet linearly increases with the moving wall velocity, but the slope is always higher (i.e., the droplet moves faster) in the surfactant-laden case where the droplet exhibits a bigger deformation. When Cae is increased beyond a critical value ( Cae,c), the droplet breakup would happen. The presence of surfactants is found to decrease the value of Cae,c, but it shows a non-monotonic effect on the droplet breakup. An increase in Re is able to increase not only droplet deformation but also surfactant dilution. The role of surfactants in the droplet behavior is found to greatly depend upon the surface wettability. For a hydrophilic surface, the presence of surfactants can decrease the wetting length and enables the droplet to reach a steady state faster; while for a hydrophobic surface, it increases the wetting length and delays the departure of the droplet from the solid surface.

9.
Phys Rev E ; 99(1-1): 013308, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780284

ABSTRACT

A multiphase lattice Boltzmann method is developed to simulate immiscible three-phase flows with contact-line dynamics. In this method, the immiscible three-phase flow is modeled by a multiple-relaxation-time color-gradient model, which not only allows for a full range of interfacial tensions but also can produce viscosity-independent results especially when the fluid-surface interactions are considered. To achieve the desired contact angles, a weighted contact angle model is utilized to obtain a relatively smooth transition of contact angle for each fluid, which is enforced through a geometrical wetting condition. This method is first validated by simulations of a Janus droplet resting on a surface for various contact angles and fluid properties and dynamic capillary filling of ternary fluids with different viscosity ratios. It is then used to simulate a Janus droplet on a substrate subject to Poiseuille flow. Results show that the droplet may undergo three typical modes, namely, two stable deformation modes and breakup mode, which depend not only on the inlet velocity but also on the fluid viscosity. The terminal velocity of moving droplet increases linearly with the inlet velocity in both stable modes only when three fluids do not differ much in their viscosities.

10.
Eur Phys J E Soft Matter ; 41(10): 124, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30324324

ABSTRACT

Immiscible two-phase flow in porous media is commonly encountered in industrial processes and environmental issues, such as enhanced oil recovery and the migration of fluids in an unsaturated zone. To deepen the current understanding of its underlying mechanism, this work focuses on the factors that influence the relative permeability and specific interfacial length of a two-phase flow in porous media, i.e., fluid saturation, viscosity ratio and contact angle. The lattice Boltzmann color-gradient model is adopted for pore-scale investigations, and the main findings are obtained as follows. Firstly, the relative permeability of each fluid increases as its saturation increases. The specific interfacial length first increases and then decreases as the saturation of the wetting fluid increases, and reaches a maximum when the permeabilities of both fluids are equal. Secondly, as the viscosity ratio of wetting to non-wetting fluids increases, the relative permeability of the wetting fluid will increase while that of the non-wetting fluid will decrease. The specific interfacial length will increase with increasing the viscosity difference between fluids. Finally, as the contact angle (measured from the wetting fluid) increases, the relative permeability of the wetting fluid overall increases while that of the non-wetting fluid decreases. Increasing contact angle always leads to a decrease in the specific interfacial length.

11.
Phys Rev E ; 97(3-1): 033307, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29776031

ABSTRACT

In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

12.
Phys Rev E ; 96(2-1): 023309, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950559

ABSTRACT

Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

13.
Biotechnol Bioeng ; 114(8): 1679-1687, 2017 08.
Article in English | MEDLINE | ID: mdl-28322439

ABSTRACT

Modeling multidimensional and multispecies biofilm in porous media at the pore scale is challenging due to the need to simultaneously track the microbial community in the biofilms and the interfaces between the biofilms and the fluid. Therefore, researchers usually assume that the model has only one dimension in space or has only one microbial species. This work uses bioremediation of U(VI)-contaminated groundwater as the context to develop a two-dimensional and multispecies biofilm model. The model simulates the transverse mixing zone in which U(VI) is mixed with propionate, a nutrient externally supplied to stimulate the growth of microorganisms. The model considers multiple interactions among fluid flow, transport and reaction of chemical species, and growth of biofilm. The biofilm consists of two types of active biomass (syntrophs and dissimilatory metal reducing bacteria [DMBR]) and inert biomass. The two types of active biomass collaboratively remove U(VI). The model outputs biomass distribution, chemical species concentrations, and fluid flow at the pore scale to fundamentally study the multiple interactions. The model also outputs the contaminant removal rate that can be potentially used for up-scaling studies. The simulated results are generally consistent with experimental observations from other studies in trend. The trend can be explained by the multiple interactions based on thermodynamics and microbial kinetics. Biotechnol. Bioeng. 2017;114: 1679-1687. © 2017 Wiley Periodicals, Inc.


Subject(s)
Biofilms/growth & development , Culture Media/chemistry , Culture Media/metabolism , Microbiota/physiology , Models, Biological , Bacterial Physiological Phenomena , Computer Simulation , Groundwater/microbiology , Porosity , Species Specificity
14.
Phys Rev E ; 94(2-1): 023310, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627415

ABSTRACT

In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

15.
Article in English | MEDLINE | ID: mdl-26465585

ABSTRACT

Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of daughter droplets is significantly different in both branch channels. Also, it is found that the contact angle hysteresis is strengthened with decreasing the viscosity ratio, leading to an earlier droplet breakup and a decrease in the maximum length that the droplet can reach before the breakup. These simulation results manifest that the present multiphase LBM can be a useful substitute to Ba et al. [Phys. Rev. E 88, 043306 (2013)PLEEE81539-375510.1103/PhysRevE.88.043306] for modeling the contact angle hysteresis, and it can be easily implemented with higher computational efficiency.

16.
Article in English | MEDLINE | ID: mdl-24229303

ABSTRACT

Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.

17.
Article in English | MEDLINE | ID: mdl-23410429

ABSTRACT

A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions.


Subject(s)
Algorithms , Capillary Action , Models, Theoretical , Rheology/methods , Computer Simulation , Temperature
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 046309, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680576

ABSTRACT

We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter ß=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35

SELECTION OF CITATIONS
SEARCH DETAIL
...