Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794493

ABSTRACT

Plant growth and development are driven by intricate processes, with the cell membrane serving as a crucial interface between cells and their external environment. Maintaining balance and signal transduction across the cell membrane is essential for cellular stability and a host of life processes. Ion channels play a critical role in regulating intracellular ion concentrations and potentials. Among these, K+ channels on plant cell membranes are of paramount importance. The research of Shaker K+ channels has become a paradigm in the study of plant ion channels. This study offers a comprehensive overview of advancements in Shaker K+ channels, including insights into protein structure, function, regulatory mechanisms, and research techniques. Investigating Shaker K+ channels has enhanced our understanding of the regulatory mechanisms governing ion absorption and transport in plant cells. This knowledge offers invaluable guidance for enhancing crop yields and improving resistance to environmental stressors. Moreover, an extensive review of research methodologies in Shaker K+ channel studies provides essential reference solutions for researchers, promoting further advancements in ion channel research.

2.
Front Plant Sci ; 15: 1378738, 2024.
Article in English | MEDLINE | ID: mdl-38660442

ABSTRACT

Soil salinization poses a mounting global ecological and environmental threat. The identification of genes responsible for negative regulation of salt tolerance and their utilization in crop improvement through gene editing technologies emerges as a swift strategy for the effective utilization of saline-alkali lands. One efficient mechanism of plant salt tolerance is maintaining the proper intracellular K+/Na+ ratio. The Shaker K+ channels play a crucial role in potassium absorption, transport, and intracellular potassium homeostasis in plant cells. Here, the study presents the first genome-wide identification of Shaker K+ channels in Nicotiana tabacum L., along with a detailed bioinformatic analysis of the 20 identified members. Transcriptome analysis revealed a significant up-regulation of NtSKOR1B, an outwardly-rectifying member predominantly expressed in the root tissue of tobacco seedlings, in response to salt stress. This finding was then confirmed by GUS staining of ProNtSKOR1B::GUS transgenic lines and RT-qPCR analysis. Subsequently, NtSKOR1B knockout mutants (ntskor1) were then generated and subjected to salt conditions. It was found that ntskor1 mutants exhibit enhanced salt tolerance, characterized by increased biomass, higher K+ content and elevated K+/Na+ ratios in both leaf and root tissues, compared to wild-type plants. These results indicate that NtSKOR1B knockout inhibits K+ efflux in root and leaf tissues of tobacco seedlings under salt stress, thereby maintaining higher K+/Na+ ratios within the cells. Thus, our study identifies NtSKOR1B as a negative regulator of salt tolerance in tobacco seedlings.

3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069281

ABSTRACT

Salinity stands as a significant environmental stressor, severely impacting crop productivity. Plants exposed to salt stress undergo physiological alterations that influence their growth and development. Meanwhile, plants have also evolved mechanisms to endure the detrimental effects of salinity-induced salt stress. Within plants, Calcineurin B-like (CBL) proteins act as vital Ca2+ sensors, binding to Ca2+ and subsequently transmitting signals to downstream response pathways. CBLs engage with CBL-interacting protein kinases (CIPKs), forming complexes that regulate a multitude of plant growth and developmental processes, notably ion homeostasis in response to salinity conditions. This review introduces the repercussions of salt stress, including osmotic stress, diminished photosynthesis, and oxidative damage. It also explores how CBLs modulate the response to salt stress in plants, outlining the functions of the CBL-CIPK modules involved. Comprehending the mechanisms through which CBL proteins mediate salt tolerance can accelerate the development of cultivars resistant to salinity.


Subject(s)
Calcineurin , Plant Proteins , Plant Proteins/metabolism , Calcineurin/metabolism , Protein Kinases/metabolism , Salt Stress , Stress, Physiological , Calcium-Binding Proteins/metabolism
4.
Braz J Microbiol ; 54(4): 2951-2959, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37843795

ABSTRACT

Xylanase is widely used in various industries such as food processing, paper, textiles, and leather tanning. In this study, Bacillus cereus L-1 strain was isolated and identified as capable of producing low molecular weight xylanase through 16 s rRNA sequencing. Maximum xylanase yield of 15.51 ± 2.08 U/mL was achieved under optimal fermentation conditions (5% inoculum, 20 g/L xylan, pH 6.0, for 24 h). After purification via ammonium sulfate precipitation and High-S ion exchange chromatography, electrophoretic purity xylanase was obtained with a 28-fold purification and specific activity of 244.97 U/mg. Xylanase had an optimal pH of 6.5 and temperature of 60 °C and displayed thermostability at 30 °C and 40 °C with 48.56% and 45.97% remaining activity after 180 min, respectively. The xylanase retained more than 82.97% of its activity after incubation for 24 h at pH 5.0 and was sensitive to metal ions, especially Mg2+ and Li+. Purified xylanase showed a molecular weight of 23 kDa on SDS-PAGE, and partial peptide sequencing revealed homology to the endo-1,4-beta-xylanase with a molecular weight of 23.3 kDa through LC/MS-MS (liquid chromatography-tandem mass spectrometry). This study suggests that the purified xylanase is easier to purify and enriches low molecular weight xylanases from bacteria source.


Subject(s)
Bacillus cereus , Endo-1,4-beta Xylanases , Bacillus cereus/genetics , Bacillus cereus/metabolism , Molecular Weight , Enzyme Stability , Temperature , Fermentation , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Hydrogen-Ion Concentration
5.
Front Plant Sci ; 14: 1152817, 2023.
Article in English | MEDLINE | ID: mdl-37496856

ABSTRACT

Inherently, ammonium (NH4 +) is critical for plant growth; however, its toxicity suppresses potassium (K+) uptake and vice-versa. Hence, attaining a nutritional balance between these two ions (NH4 + and K+) becomes imperative for the growth of tobacco seedlings. Therefore, we conducted a 15-day experimental study on tobacco seedlings exposed to different concentrations (47 treatments) of NH4 +/K+ at different corresponding 12 ratios simultaneously in a hydroponic system. Our study aimed at establishing the optimal NH4 +-K+ concentration and the corresponding ratio required for optimal growth of different tobacco plant organs during the seedling stage. The controls were the baseline for comparison in this study. Plants with low or excessive NH4 +-K+ concentration had leaf chlorosis or dark greenish colouration, stunted whole plant part biomass, and thin roots. We found that adequate K+ supply is a pragmatic way to mitigate NH4 +-induced toxicity in tobacco plants. The optimal growth for tobacco leaf and root was attained at NH4 +-K+ concentrations 2-2 mM (ratio 1:1), whereas stem growth was optimal at NH4 +-K+ 1-2 mM (1:2). The study provided an insight into the right combination of NH4 +/K+ that could mitigate or prevent NH4 + or K+ stress in the tobacco seedlings.

6.
Front Plant Sci ; 14: 1074839, 2023.
Article in English | MEDLINE | ID: mdl-36895876

ABSTRACT

Nitrate ( NO 3 - ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of NO 3 - transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of NO 3 - transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters' functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of NO 3 - transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.

7.
Plant Cell Environ ; 46(10): 3012-3022, 2023 10.
Article in English | MEDLINE | ID: mdl-35822392

ABSTRACT

Plants have evolved to deal with different stresses during plant growth, relying on complex interactions or crosstalk between multiple signalling pathways in plant cells. In this sophisticated regulatory network, Ca2+ transients in the cytosol ([Ca2+ ]cyt ) act as major physiological signals to initiate appropriate responses. The CALCINEURIN B-LIKE PROTEIN (CBL)-CBL-INTERACTING PROTEIN KINASE (CIPK) network relays physiological signals characterised by [Ca2+ ]cyt transients during plant development and in response to environmental changes. Many studies are aimed at elucidating the role of the CBL-CIPK network in plant growth and stress responses. This review discusses the involvement of the CBL-CIPK pathways in two levels of crosstalk between plant development and stress adaptation: direct crosstalk through interaction with regulatory proteins, and indirect crosstalk through adaptation of correlated physiological processes that affect both plant development and stress responses. This review thus provides novel insights into the physiological roles of the CBL-CIPK network in plant growth and stress adaptation.


Subject(s)
Arabidopsis , Protein Kinases , Protein Kinases/metabolism , Plant Proteins/metabolism , Arabidopsis/metabolism , Calcium-Binding Proteins/metabolism , Plant Development
8.
Plants (Basel) ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501338

ABSTRACT

Plants utilize carbohydrates as the main energy source, but much focus has been on the impact of N and K on plant growth. Less is known about the combined impact of NH4+ and K+ nutrition on photoassimilate distribution among plant organs, and the resultant effect of such distribution on growth of tobacco seedlings, hence this study. Here, we investigated the synergetic effect of NH4+ and K+ nutrition on photoassimilate distribution, and their resultant effect on growth of tobacco seedlings. Soluble sugar and starch content peaks under moderate NH4+ and moderate K+ (2-2 mM), leading to improved plant growth, as evidenced by the increase in tobacco weight and root activity. Whereas, a drastic reduction in the above indicators was observed in plants under high NH4+ and low K+ (20-0.2 mM), due to low carbohydrate synthesis and poor photoassimilate distribution. A strong positive linear relationship also exists between carbohydrate (soluble sugar and starch) and the activities of these enzymes but not for invertase. Our findings demonstrated that NH4+ and K+-induced ion imbalance influences plant growth and is critical for photoassimilate distribution among organs of tobacco seedlings.

9.
Biotechnol Lett ; 44(12): 1415-1429, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36315298

ABSTRACT

In order to figure out the effect of organic fertilizers with different carbon-nitrogen (C/N) ratios on the soil improvement and the healthy cultivation, the pot experiment method was used to study effects on the physical and chemical properties and the bacterial community structure of sandy loam soil using five treatments of chemical fertilizer application with the C/N ratios of 15 (CN15), 20 (CN20), 25 (CN25), 30 (CN30) and the control (CK) respectively. Results show that the organic materials with different C/N ratios significantly improve the soil porosity and water content, which all show a linear change rule with the C/N ratio. It can also significantly increase the soil total carbon, total nitrogen, soil C/N ratio, soil microbial biomass carbon, microbial biomass nitrogen and microbial biomass C/N ratio. Among them, CN30 significantly increases the soil total carbon and C/N ratio, which are 5.34-24.13% and 8.87-30.15% respectively compared with other treatments. It can be also found that the dominant flora (at the phylum level) of each treatment are Actinobacteria, Proteobacteria and Chlorobi. The CN30 treatment presents the most obvious improvement in the diversity and richness of the soil bacterial community and is more conducive to the growth and reproduction of Proteobacteria and Firmicutes. The correlation analysis shows that Ctotal/Ntotal and Cmic/Nmic are the most important environmental factors affecting the soil physical and chemical properties and their correlation with the bacterial communities. The higher C/N ratio of organic materials results in a more significant improvement of the soil physical and chemical properties. This study provides a new theoretical basis for the soil health cultivation technology.


Subject(s)
Nitrogen , Soil , Soil/chemistry , Nitrogen/analysis , Carbon/analysis , Soil Microbiology , Fertilizers/analysis , Bacteria
10.
Sci Rep ; 12(1): 16326, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175419

ABSTRACT

Soil organic carbon (SOC), total nitrogen (TN), and their ratio (C:N) play important roles in preserving soil fertility, and their values are closely related to fertilizer use. However, the overall trend and magnitude of changes in SOC, TN and C:N in response to chemical nitrogen fertilizers reduction remain inconclusive. Here, the meta-analysis conducted comparisons at 48 sites covering various cropping system, soil type, and climatic regions of China to investigate the responses of SOC, TN and C:N to chemical nitrogen fertilizers reduction. The results showed that chemical nitrogen fertilizers reduction decreased SOC by 2.76 ± 0.3% and TN by 4.19 ± 0.8%, and increased the C:N by 6.11 ± 0.9% across all the database. Specifically, the reduction of chemical nitrogen without adding organic nitrogen fertilizers would reduce SOC and TN by 3.83% and 11.46% respectively, while they increased SOC and TN by 4.92% and 8.33% respectively with organic fertilizers supplement, suggesting that organic fertilizers could cover the loss of SOC, TN induced by chemical nitrogen fertilizers reduction. Medium magnitude (20-30%) of chemical nitrogen fertilizers reduction enhanced SOC by 6.9%, while high magnitude (≧30%) and total (100%) of chemical nitrogen fertilizers reduction significantly decreased SOC by 3.10% and 7.26% respectively. Moreover, SOC showed a negative response to nitrogen fertilizers reduction at short-term duration (1-2 years), while the results converted under medium-long-termThis system analysis fills the gap on the effects of fertilizer reduction on soil organic carbon and nitrogen at the national scale, and provides technical foundation for the action of reducing fertilizer application while increase efficiency.


Subject(s)
Carbon , Fertilizers , China , Nitrogen , Soil
11.
Food Res Int ; 157: 111262, 2022 07.
Article in English | MEDLINE | ID: mdl-35761574

ABSTRACT

Green tea is popularly known for its pleasant flavor and health-care functions. Bitterness and astringency are the two important quality attributes of green tea that enrich tea flavor. Although many research works have focused on the flavor formation of green tea, the review articles about bitterness and astringency is limited. This review article summarizes the major components of bitter and astringent substances in green tea, their sensory perception mechanism, factors influencing the formation of these substances, and the evaluation methods of bitterness and astringency. This review will shed light on the subsequent studies in tea flavor, and provide deeper insight for the research of bitterness and astringency in other foods.


Subject(s)
Astringents , Tea , Astringents/pharmacology , Humans , Perception , Sensation , Taste
12.
Front Plant Sci ; 12: 740976, 2021.
Article in English | MEDLINE | ID: mdl-34603362

ABSTRACT

Many tobacco (Nicotiana tabacum) cultivars are salt-tolerant and thus are potential model plants to study the mechanisms of salt stress tolerance. The CALCINEURIN B-LIKE PROTEIN (CBL) is a vital family of plant calcium sensor proteins that can transmit Ca2+ signals triggered by environmental stimuli including salt stress. Therefore, assessing the potential of NtCBL for genetic improvement of salt stress is valuable. In our studies on NtCBL members, constitutive overexpression of NtCBL5A was found to cause salt supersensitivity with necrotic lesions on leaves. NtCBL5A-overexpressing (OE) leaves tended to curl and accumulated high levels of reactive oxygen species (ROS) under salt stress. The supersensitivity of NtCBL5A-OE leaves was specifically induced by Na+, but not by Cl-, osmotic stress, or drought stress. Ion content measurements indicated that NtCBL5A-OE leaves showed sensitivity to the Na+ accumulation levels that wild-type leaves could tolerate. Furthermore, transcriptome profiling showed that many immune response-related genes are significantly upregulated and photosynthetic machinery-related genes are significantly downregulated in salt-stressed NtCBL5A-OE leaves. In addition, the expression of several cation homeostasis-related genes was also affected in salt-stressed NtCBL5A-OE leaves. In conclusion, the constitutive overexpression of NtCBL5A interferes with the normal salt stress response of tobacco plants and leads to Na+-dependent leaf necrosis by enhancing the sensitivity of transgenic leaves to Na+. This Na+ sensitivity of NtCBL5A-OE leaves might result from the abnormal Na+ compartmentalization, plant photosynthesis, and plant immune response triggered by the constitutive overexpression of NtCBL5A. Identifying genes and pathways involved in this unusual salt stress response can provide new insights into the salt stress response of tobacco plants.

13.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946791

ABSTRACT

Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.


Subject(s)
Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Sucrose/metabolism , Biological Transport, Active , Carbon/metabolism , Crop Production/methods , Global Warming , Phloem/metabolism , Photosynthesis , Plant Leaves/metabolism , Plant Roots/metabolism , Sustainable Development
14.
Plants (Basel) ; 10(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567573

ABSTRACT

CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, there are limited reports on their roles in seedling growth and development, especially in Solanaceae plants. In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally during seed germination and early seedling growth. To study the biological function of NtCIPK23 at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed germination and the appearance of green cotyledon of young tobacco seedling. Overexpression of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings. The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious difference in hypocotyl length among different tobacco materials was observed in the dark, compared to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion and hypocotyl elongation of young tobacco seedlings.

15.
Genes (Basel) ; 11(6)2020 06 09.
Article in English | MEDLINE | ID: mdl-32526869

ABSTRACT

Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.


Subject(s)
Arabidopsis/genetics , Biological Transport/genetics , Nitrates/metabolism , Plant Roots/metabolism , Anion Transport Proteins/genetics , Arabidopsis/metabolism , Endosomes/genetics , Endosomes/metabolism , Nitrate Transporters , Organogenesis, Plant/genetics , Phosphorylation , Plant Proteins/genetics , Signal Transduction/genetics
16.
Int J Mol Sci ; 21(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326090

ABSTRACT

Nitrate (NO3-) and auxin are key regulators of root growth and development, modulating the signalling cascades in auxin-induced lateral root formation. Auxin biosynthesis, transport, and transduction are significantly altered by nitrate. A decrease in nitrate (NO3-) supply tends to promote auxin translocation from shoots to roots and vice-versa. This nitrate mediated auxin biosynthesis regulating lateral roots growth is induced by the nitrate transporters and its downstream transcription factors. Most nitrate responsive genes (short-term and long-term) are involved in signalling overlap between nitrate and auxin, thereby inducing lateral roots initiation, emergence, and development. Moreover, in the auxin signalling pathway, the varying nitrate supply regulates lateral roots development by modulating the auxin accumulation in the roots. Here, we focus on the roles of nitrate responsive genes in mediating auxin biosynthesis in Arabidopsis root, and the mechanism involved in the transport of auxin at different nitrate levels. In addition, this review also provides an insight into the significance of nitrate responsive regulatory module and their downstream transcription factors in root system architecture in the model plant Arabidopsis thaliana.


Subject(s)
Indoleacetic Acids/metabolism , Nitrates/metabolism , Plant Roots/metabolism , Signal Transduction , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Biological Transport , Biomarkers , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development
17.
Plants (Basel) ; 9(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295180

ABSTRACT

Ammonium (NH4+) toxicity is always accompanied by ion imbalances, and NH4+ and potassium (K+) exhibit a competitive correlation in their uptake and transport processes. In Arabidopsis thaliana, the typical leaf chlorosis phenotype in the knockout mutant of calcineurin B-like interacting protein kinase 23 (CIPK23) is high-NH4+-dependent under low-K+ condition. However, the correlation of K+ and NH4+ in the occurrence of leaf chlorosis in the cipk23 mutant has not been deeply elucidated. Here, a modified hydroponic experimental system with different gradients of NH4+ and K+ was applied. Comparative treatments showed that NH4+ toxicity, which is triggered mainly by the high ratio of NH4+ to K+ (NH4+/K+ ≥ 10:1 for cipk23) but not by the absolute concentrations of the ions, results in leaf chlorosis. Under high NH4+/K+ ratios, CIPK23 is upregulated abundantly in leaves and roots, which efficiently reduces the leaf chlorosis by regulating the contents of NH4+ and K+ in plant shoots, while promoting the elongation of primary and lateral roots. Physiological data were obtained to further confirm the role CIPK23 in alleviating NH4+ toxicity. Taken all together, CIPK23 might function in different tissues to reduce stress-induced NH4+ toxicity associated with high NH4+/K+ ratios by regulating the NH4+-K+ balance in Arabidopsis.

18.
Nat Prod Rep ; 37(1): 80-99, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31073570

ABSTRACT

Covering: up to 2019As abundant natural products, isoprenoids have many useful industrial applications in the manufacturing of drugs, fragrances, food additives, colorants, rubber and advanced biofuels. The microbial production of isoprenoids has received much attention in recent years. Metabolic engineering approaches and synthetic biology have been utilized to reconstruct and optimize the metabolic pathways for isoprenoid production in cell factories. In this review, the recent advances in isoprenoid production using microbes are summarized, with a focus on MEP and MVA pathway engineering, downstream isoprenoid pathway engineering and microbial host engineering, which mainly includes central carbon pathway engineering. Finally, future perspectives for the improvement of isoprenoid production are discussed.


Subject(s)
Biological Products/metabolism , Enzymes/metabolism , Metabolic Engineering/methods , Microorganisms, Genetically-Modified/cytology , Terpenes/metabolism , Biosynthetic Pathways/genetics , Coenzymes/metabolism , Enzymes/genetics , Metabolic Engineering/trends , Protein Engineering/methods
19.
BMC Biotechnol ; 19(1): 45, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31299949

ABSTRACT

BACKGROUND: Tobacco stalk (TS), a major agricultural waste abundant in pectin, has resulted in concerns about the need for its reuse. The nicotine in TS is considered a chemical that is to\xic and hazardous to the environment. RESULTS: In this study, Bacillus tequilensis CAS-MEI-2-33 was isolated from cigar wrappers to produce alkaline pectinase using TS. Subsequently, the medium and fermentation conditions for the production of pectinase by B. tequilensis CAS-MEI-2-33 were optimized. The optimal fermentation period, pH of the initial fermentation medium, concentration of TS, and inoculum amount for B. tequilensis CAS-MEI-2-33 were 40 h, 40 g/L, 7.0, and 3%, respectively. Under optimal conditions, the pectinase activity was 1370 U/mL. Then, the enzymatic properties, such as the optimum pH, reaction temperature, temperature stability, and effects of metal ions, were studied. The optimal pH was determined to be 10.0, indicating that the enzyme was an alkaline pectinase. The optimal temperature was 40 °C, and pectinase activity was stable at 40 °C. The Ag+ metal ions were shown to remarkably promote enzyme activity. The pectinase was partly purified by ammonium sulfate precipitation, ion exchange chromatography, and Sephacryl S-100 chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and LC-MS/MS analyses were utilized to analyze the pectinase. CONCLUSIONS: This study provided a new alkaline pectinase candidate and a new strategy for the use of TS.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/metabolism , Nicotiana/chemistry , Pectins/metabolism , Polygalacturonase/metabolism , Bacillus/classification , Bacillus/genetics , Enzyme Stability , Fermentation , Hydrogen-Ion Concentration , Industrial Microbiology/methods , Phylogeny , Temperature , Nicotiana/metabolism , Tobacco Products/microbiology
20.
Prep Biochem Biotechnol ; 49(6): 557-566, 2019.
Article in English | MEDLINE | ID: mdl-30957655

ABSTRACT

Pullulan is an extracellular water-soluble polysaccharide with wide applications. In this study, we screened strains that could selectively produce high molecular weight pullulan for application in industrial pullulan production. A new fungus strain A4 was isolated from soil and identified as Aureobasidium melanogenum based on colony characteristics, morphology, and internally transcribed spacer analysis. Thin-layer chromatography, Fourier-transform infrared spectroscopy, and nuclear magnetic resonance analysis suggested that the dominant exopolysaccharide produced by this strain, which presented a molecular weight of 1.384 × 106 Dalton in in-gel permeation chromatography, was pullulan. The culture conditions for A. melanogenum A4 were optimized at 30 °C and 180 rpm: carbon source, 50 g/L maltose; initial pH 7; and 8 g/L Tween 80. Subsequently, batch fermentation was performed under the optimized conditions in a 5-L stirred-tank fermentor with a working volume of 3 L. The fermentation broth contained 303 g/L maltose, which produced 122.34 g/L pullulan with an average productivity of 1.0195 g/L/h and 82.32 g/L dry biomass within 120 h. The conversion efficiency of maltose to pullulan (Y%) and specific production rate (g/h/g dry cells) (Qs) reached 40.3% and 0.0251 g/L/g dry cells, respectively. The results showed strain A4 could be a good candidate for industrial production.


Subject(s)
Ascomycota/metabolism , Glucans/biosynthesis , Biomass , Chromatography, Thin Layer , Culture Media , Fermentation/drug effects , Glucans/chemistry , Glucans/isolation & purification , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Weight , Polysorbates/pharmacology , Spectroscopy, Fourier Transform Infrared , Sugars/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL