Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Insect Sci ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556782

ABSTRACT

The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.

2.
Food Chem X ; 21: 101195, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38406762

ABSTRACT

In this paper, the objective was to evaluated the impact of germination of chickpea cultivars (Muying1, Y2-514 and YZ-364) on the bioactivity, volatiles and functional properties. The results showed that the Vitamin C content of Muying1, Y2-514 and YZ-364 after germination significantly increased (p < 0.05). Moreover, the germination also caused a significant decrease in lower transition temperatures and enthalpy values in chickpea flours (p < 0.05). After germination treatment, ß-sheet and random coils in protein secondary structures increased and ß-turn decreased in YZ-364; α-helix, ß-sheet and random coil in Y2-514 and Muying1 decreased, while ß-turn increased. The germination significantly enhanced the functional properties of three chickpea flours (p < 0.05). It was proved that the germination significantly enhanced the total phenolic and flavonoids content, antioxidant activity and in vitro protein digestibility. The GC-IMS revealed that the germination could affect the contents of volatile compounds of chickpea flours.

3.
Animals (Basel) ; 13(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36830335

ABSTRACT

Three ruminal cannulated Simmental crossbreed bulls (approximately 3 years of age and with 380 ± 20 kg live weight at initiation of the experiment) were used in a 3 × 3 Latin square experiment in order to determine the effects of the treatments on ruminal pH and degradability of nutrients, as well as the rumen fungal community. The experimental periods were 21 d, with 18 d of adjustment to the respective dietary treatments and 3 d of sample collection. Treatments consisted of a basal diet containing a 47.11% composition of two sources of forage as follows: (1) 100% millet straw (MILLSTR), (2) 50:50 millet straw and corn straw (COMB), and (3) 100% corn straw (CORNSTR). Dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) were tested for ruminal degradability using the nylon bag method, which was incubated for 6, 12, 24, 36, 48, and 72 h, and rumen fungal community in rumen fluid was determined by high-throughput gene sequencing technology. Ruminal pH was not affected by treatments. At 72 h, compared to MILLSTR, DM degradability of CORNSTR was 4.8% greater (p < 0.05), but when corn was combined with millet straw, the difference in DM degradability was 9.4%. During the first 24 h, degradability of CP was lower for CORNSTR, intermediate for MILLSTR, and higher for COMB. However, at 72 h, MILLSTR and COMB had a similar CP degradability value, staying greater than the CP degradability value of the CORNSTR treatment. Compared to MILLSTR, the rumen degradability of NDF was greater for CORNSTR and intermediate for the COMB. There was a greater degradability for ADF in CORNSTR, intermediate for COMB, and lower for MILLSTR. In all treatments, Ascomycota and Basidiomycota were dominant flora. Abundance of Basidiomycota in the group COMB was higher (p < 0.05) than that in the group CORNSTR at 12 h. Relative to the fungal genus level, the Thelebolus, Cladosporium, and Meyerozyma were the dominant fungus, and the abundance of Meyerozyma in COMB and CORNSTR were greater (p < 0.05) than MILLSTR at 12, 24, and 36 h of incubation. In conclusion, it is suggested to feed beef cattle with different proportions of millet straw and corn straw combinations.

4.
PLoS Negl Trop Dis ; 16(12): e0010965, 2022 12.
Article in English | MEDLINE | ID: mdl-36455055

ABSTRACT

BACKGROUND: Endogenous circadian rhythms result from genetically-encoded molecular clocks, whose components and downstream output factors cooperate to generate cyclic changes in activity. Mating is an important activity of mosquitoes, however, the key aspects of mating rhythm patterns and their regulatory mechanisms in two vector mosquito species, Aedes albopictus and Culex quinquefasciatus, remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: We determined and compared the diel mating activity rhythms of these two mosquito species and discovered that Ae. albopictus had mating peaks in the light/dark transition periods (ZT0-3 and ZT9-12), while Cx. quinquefasciatus only had a mating peak at ZT12-15. Knockouts of the clock (clk) orthologous genes (Aalclk and Cxqclk) resulted in phase delay or phase reversal of the mating peaks in Ae. albopictus and Cx. quinquefasciatus, respectively. In addition, the temporal expression pattern of the desaturase orthologous genes, desat1, in both mosquito species was also different in respective wild-type strains and showed phase changes similar to the mating rhythms in clk mutant strains. Inhibition of desat1 expression resulted in decreased mating activity in male mosquitoes of both species but not females. In addition, desat1 regulated cuticular hydrocarbons' synthesis in both species. Silencing desat1 in male Ae. albopictus resulted in decreases of nonadecane and tricosane, which promoted mating, with concomitant increases of heptacosane, which inhibited mating. Silencing desat1 in male Cx. quinquefasciatus also resulted in decreases of tricosane, which promoted mating. CONCLUSIONS/SIGNIFICANCE: These results suggest that Aalclk and Cxqclk have significant roles in the mating activity rhythms in both Ae. albopictus and Cx. quinquefasciatus by regulating the temporal expression of the desat1 gene under LD cycles, which affects sex pheromone synthesis and mating. This work provides insights into the molecular regulatory mechanism of distinct mating rhythm of Ae. albopictus and Cx. quinquefasciatus and may provide a basis for the control of these two important vector mosquitoes.


Subject(s)
Aedes , Culex , Animals , Male , Culex/genetics , Aedes/genetics , Mosquito Vectors/genetics , Reproduction/genetics
5.
Soft Matter ; 18(45): 8656-8662, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36349695

ABSTRACT

Amphiphilic molecules can self-assemble in solution into a variety of supramolecular assemblies, ranging from simple micelles, ribbons, and tubes to complex cubosomes with bicontinuous cubic nanostructures. It is well known that the self-assembly of chiral building blocks into one-dimensional (1D) twisted fibers, helical ribbons, and tubes enables chiral transfer from the molecular scale to super-assemblies. In this study, we investigate the chirality of three-dimensional (3D) supramolecular assemblies, such as colloidal onions, cubosomes, and hexosomes, formed from the same chiral heteroclusters. Unlike supramolecular 1D helical ribbons, these assemblies do not have chiral external shapes or chiral internal nanostructures, but they do exhibit circular dichroism, suggesting that they are chiral. Structural studies revealed that the ordered arrangement of the chiral units in curved superstructures is the origin of the supramolecular chirality of these 3D assemblies. Therefore, this study provides insights for enriching the diversity and complexity of supramolecular chiral assemblies.


Subject(s)
Nanostructures , Onions , Stereoisomerism , Circular Dichroism , Nanostructures/chemistry , Micelles
6.
Sensors (Basel) ; 22(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36146437

ABSTRACT

The combination of unmanned aerial vehicles (UAVs) and artificial intelligence is significant and is a key topic in recent substation inspection applications; and meter reading is one of the challenging tasks. This paper proposes a method based on the combination of YOLOv5s object detection and Deeplabv3+ image segmentation to obtain meter readings through the post-processing of segmented images. Firstly, YOLOv5s was introduced to detect the meter dial area and the meter was classified. Following this, the detected and classified images were passed to the image segmentation algorithm. The backbone network of the Deeplabv3+ algorithm was improved by using the MobileNetv2 network, and the model size was reduced on the premise that the effective extraction of tick marks and pointers was ensured. To account for the inaccurate reading of the meter, the divided pointer and scale area were corroded first, and then the concentric circle sampling method was used to flatten the circular dial area into a rectangular area. Several analog meter readings were calculated by flattening the area scale distance. The experimental results show that the mean average precision of 50 (mAP50) of the YOLOv5s model with this method in this data set reached 99.58%, that the single detection speed reached 22.2 ms, and that the mean intersection over union (mIoU) of the image segmentation model reached 78.92%, 76.15%, 79.12%, 81.17%, and 75.73%, respectively. The single segmentation speed reached 35.1 ms. At the same time, the effects of various commonly used detection and segmentation algorithms on the recognition of meter readings were compared. The results show that the method in this paper significantly improved the accuracy and practicability of substation meter reading detection in complex situations.


Subject(s)
Algorithms , Artificial Intelligence
7.
Food Res Int ; 159: 111655, 2022 09.
Article in English | MEDLINE | ID: mdl-35940774

ABSTRACT

Sprouts have been more and more popular among people all over the world due to their health benefits and good taste. Cold plasma (CP) is a promising and efficient nonthermal technology that has been applied to various aspects, including seed germination, plant growth, the synthesis of secondary metabolites. This review aims to represent the current knowledge status and future insights of CP on germination, nutritional quality and microbial inactivation of sprouts, and influencing mechanism was also discussed. CP under favorable conditions can promote the growth of sprouts, thus increase the yield of sprouts and microgreens. Numerous studies suggest that CP can promote the accumulation of bioactive compounds in sprouts, and subsequently enhance biological activities and so on the antioxidant capacity and antiproliferative effect. CP is an effective method for the inactivation of microorganisms on seeds and sprouts by reactive species. Therefore, CP is a promising technology for the sustainable development of sprouts industry.


Subject(s)
Plasma Gases , Food Microbiology , Germination , Humans , Nutrients , Seeds
8.
Anal Chim Acta ; 1225: 340267, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36038228

ABSTRACT

To combat the new virus currently ravaging the whole world, every possible anti-virus strategy should be explored. As the main strategy of targeting the virus itself is being frustrated by the rapid mutation of the virus, people are seeking an alternative "host targeting" strategy: neutralizing proteins in the human body that cooperate with the virus. The cathepsin family is such a group of promising host targets, the main biological function of which is to digest the extracellular matrix (ECM) to clear a path for virus spreading. To evaluate the potential of cathepsin as a host target, we have constructed a biosensing interface mimicking the ECM, which can detect cathepsin from 3.3 pM to 33 nM with the limit of detection of 1 pM. Based on our quantitative analysis enabled by this biosensing interface, it is clear that patients with background diseases such as chronic inflammation and tumor, tend to have higher cathepsin activity, confirming the potential of cathepsin to serve as a host target for combating COVID-19 virus.


Subject(s)
COVID-19 , COVID-19/diagnosis , Cathepsins/metabolism , Extracellular Matrix/metabolism , Humans , SARS-CoV-2
9.
PNAS Nexus ; 1(2): pgac041, 2022 May.
Article in English | MEDLINE | ID: mdl-35601361

ABSTRACT

Aedes albopictus is the most invasive mosquito in the world and often displaces Ae. aegypti in regions where their populations overlap. Interspecific mating has been proposed as a possible cause for this displacement, but whether this applies across the range of their sympatry remains unclear. Aedes albopictus and Ae. aegypti collected from allopatric and sympatric areas in China were allowed to interact in cage experiments with different crosses and sex-choices. The results confirm that asymmetric interspecific mating occurs in these populations with matings between allopatric Ae. albopictus males and Ae. aegypti females being significantly higher (55.2%) than those between Ae. aegypti males and Ae. albopictus females (27.0%), and sympatric mosquitoes showed a similar but lower frequency bias, 25.7% versus 6.2%, respectively. The cross-mated females can mate second time (remate) with the respective conspecific males and the 66.7% remating success of female Ae. albopictus was significantly higher than the 9.3% of Ae. aegypti females. Furthermore, 17.8% of the matings of Ae. albopictus males exposed to mixed pools of Ae. albopictus and Ae. aegypti females and 9.3% of the matings of Ae. aegypti males with mixed Ae. aegypti and Ae. albopictus females were interspecific. The difference in the length of clasper between male Ae. albopictus (0.524 mm) and Ae. aegypti (0.409 mm) may be correlated with corresponding mates. We conclude that stronger Ae. albopictus male interspecific mating and more avid female intraspecific remating result in a satyr effect and contribute to competitive displacement of Ae. aegypti as allopatric Ae. albopictus invade during range expansion.

10.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630723

ABSTRACT

Sorghum is ranked the fifth most commonly used cereal and is rich in many kinds of bioactive compounds. Food processing can affect the accumulation and decomposition of bioactive compounds in sorghum grains, and then change the biological activities of sorghum grains. The present review aims to analyze the effects of processing technologies on bioactive compounds and the biological activities of sorghum grains. Decortication reduces the total phenols, tannins, and antioxidant activity of sorghum grains. The effects of thermal processes on bioactive compounds and potential biological activities of sorghum grains are complicated due to thermal treatment method and thermal treatment conditions, such as extrusion cooking, which has different effects on the bioactive compounds and antioxidant capacity of sorghum due to extrusion conditions, such as temperature and moisture, and food matrices, such as whole grain and bran. Emerging thermal processes, such as microwave heating and high-pressure processing, could promote the release of bound phenolic substances and procyanidins, and are recommended. Biological processes can increase the nutritive and nutraceutical quality and reduce antinutritional compounds, except for soaking which reduces water-soluble compounds in sorghum.


Subject(s)
Sorghum , Antioxidants/analysis , Antioxidants/pharmacology , Edible Grain/chemistry , Phenols/analysis , Tannins
11.
Gene ; 827: 146466, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35390446

ABSTRACT

Osteoarthritis (OA) is a kind of degenerative joint disease marked by the destruction of articular cartilage due to the degeneration of chondrocytes. CHSY1, one of the glycosyltransferases, is involved in the synthesis of chondroitin sulfate. Herein, we found that the expression of Chsy1 was decreased in the knee cartilage of OA rats. In order to investigate the role of CHSY1 in chondrogenesis and OA, we established a Chsy1 stable knockdown cell line in mouse ATDC5 chondrocytes by lentivirus. It was found that Chsy1 deficiency resulted in a reduction of extracellular matrix production in chondrocytes and a promotion of endochondral osteogenesis, which was indicated by the decreased expression of early chondrocytes genes (Col2a1, Sox9), and the increased expression of cartilage hypertrophy genes (Col10a1, Runx2, Mmp13, Mmp3). The expression trend of these genes is considered to be the characteristic of osteoarthritis. In addition, knockdown of Chsy1 could upregulate BMP signaling in differentiated chondrocytes, whereas Chsy1 overexpression had opposite effects. The reduction of extracellular matrix production and the promotion of endochondral osteogenesis by Chsy1 knockdown could be rescued by BMP signaling inhibitor LDN193189. Furthermore, the abnormally enhanced BMP signaling and the high expression of OA biomarker Mmp3 in primary cells of OA rats could be rescued by either LDN193189 or Chsy1 overexpression. These results implicate a role for Chsy1 in regulating extracellular matrix production and endochondral osteogenesis through BMP signaling; and a lack of Chsy1 could aggravate the cartilage damage of osteoarthritis.


Subject(s)
Cartilage, Articular , Glucuronosyltransferase/metabolism , Multifunctional Enzymes/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Osteoarthritis , Animals , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Matrix Metalloproteinase 3/metabolism , Mice , Osteoarthritis/genetics , Osteoarthritis/metabolism , Rats
12.
Foods ; 10(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34829151

ABSTRACT

Sorghum is the fifth most commonly used cereal worldwide and is a rich source of many bioactive compounds. We summarized phenolic compounds and carotenoids, vitamin E, amines, and phytosterols in sorghum grains. Recently, with the development of detection technology, new bioactive compounds such as formononetin, glycitein, and ononin have been detected. In addition, multiple in vitro and in vivo studies have shown that sorghum grains have extensive bio-logical activities, such as antioxidative, anticancer, antidiabetic, antiinflammatory, and antiobesity properties. Finally, with the establishment of sorghum phenolic compounds database, the bound phenolics and their biological activities and the mechanisms of biological activities of sorghum bioactive compounds using clinical trials may be researched.

13.
Chin Med ; 16(1): 119, 2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34775978

ABSTRACT

BACKGROUND: Cardiomyopathy is a kind of cardiovascular diseases, which makes it more difficult for the heart to pump blood to other parts of the body, eventually leading to heart failure. Naoxintong (NXT), as a traditional Chinese Medicine (TCM) preparation, is widely used in the treatment of cardiovascular diseases, including cardiomyopathy, while its underlying mechanism has not been fully elucidated. The purpose of this study is to investigate the therapeutic effect of NXT on cardiomyopathy and its molecular mechanism in zebrafish model. METHODS: The zebrafish cardiomyopathy model was established using terfenadine (TFD) and treated with NXT. The therapeutic effect of NXT on cardiomyopathy was evaluated by measuring the heart rate, the distance between the sinus venosus and bulbus arteriosus (SV-BA), the pericardial area, and the blood flow velocity of zebrafish. Then, the zebrafish hearts were isolated and collected; transcriptome analysis of NXT on cardiomyopathy was investigated. Moreover, the heg1 mutant of zebrafish congenital cardiomyopathy model was used to further validate the therapeutic effect of NXT on cardiomyopathy. Additionally, UPLC analysis combined with the zebrafish model investigation was performed to identify the bioactive components of NXT. RESULTS: In the TFD-induced zebrafish cardiomyopathy model, NXT treatment could significantly restore the cardiovascular malformations caused by cardiac dysfunction. Transcriptome and bioinformatics analyses of the TFD and TFD + NXT treated zebrafish developing hearts revealed that the differentially expressed genes were highly enriched in biological processes such as cardiac muscle contraction and heart development. As a cardiac development protein associated with cardiomyopathy, HEG1 had been identified as one of the important targets of NXT in the treatment of cardiomyopathy. The cardiovascular abnormalities of zebrafish heg1 mutant could be recovered significantly from NXT treatment, including the expanded atrial cavity and blood stagnation. qRT-PCR analysis further showed that NXT could restore cardiomyopathy phenotype in zebrafish through HEG1-CCM signaling. Among the seven components identified in NXT, paeoniflorin (PF) and salvianolic acid B (Sal B) were considered to be the main bioactive ones with myocardial protection. CONCLUSION: NXT presented myocardial protective effect and could restore myocardial injury and cardiac dysfunction in zebrafish; the action mechanism was involved in HEG1-CCM signaling.

14.
Langmuir ; 37(34): 10291-10297, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34410133

ABSTRACT

Heteroclusters constructed by tethering dissimilar nanoclusters using organic linkers resemble lipids and self-assemble into cubosomes, namely, microparticles of soft crystals composed of unique nanochannel lattices with a defined symmetry and topology. The internal porous crystal structures can be accurately characterized using transmission electron microscopy. We herein describe twin boundaries and five-fold twin boundaries in cubosomes with a double-diamond Pn3̅m structure. Our analysis indicates a clear distinction in the conformation of the skeletal unit: a centrosymmetric staggered conformation with point group D3d for the normal skeletal unit and a mirror-symmetric eclipsed one with point group D3h for the skeletal unit on the twin boundary. This symmetry distinction causes the channels to change direction and elongate slightly as they pass through the twin boundary, but the topology is maintained. For cubosomes containing five-fold twin boundaries, one of the channels is in the center of the particles seamlessly connecting the five blocks. Our conclusion is that the two distinct channel systems are still continuous. This fundamental understanding will contribute to the development of soft crystals with defined shapes and special inner nanostructures for advanced applications.

15.
Biomolecules ; 10(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-33198188

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of global mortality, which has caused a huge burden on the quality of human life. Therefore, experimental animal models of CVD have become essential tools for analyzing the pathogenesis, developing drug screening, and testing potential therapeutic strategies. In recent decades, zebrafish has entered the field of CVD as an important model organism. HEG1, a heart development protein with EGF like domains 1, plays important roles in the development of vertebrate cardiovascular system. Loss of HEG1 will affect the stabilization of vascular endothelial cell connection and eventually lead to dilated cardiomyopathy (DCM). Here, we generated a heg1-specific knockout zebrafish line using CRISPR/Cas9 technology. Zebrafish heg1 mutant demonstrated severe cardiovascular malformations, including atrial ventricular enlargement, heart rate slowing, venous thrombosis and slow blood flow, which were similar to human heart failure and thrombosis phenotype. In addition, the expression of zebrafish cardiac and vascular markers was abnormal in heg1 mutants. In order to apply zebrafish heg1 mutant in cardiovascular drug screening, four Traditional Chinese Medicine (TCM) herbs and three Chinese herbal monomers were used to treat heg1 mutant. The pericardial area, the distance between sinus venosus and bulbus arteriosus (SV-BA), heart rate, red blood cells (RBCs) accumulation in posterior cardinal vein (PCV), and blood circulation in the tail vein were measured to evaluate the therapeutic effects of those drugs on DCM and thrombosis. Here, a new zebrafish model of DCM and thrombosis was established, which was verified to be suitable for drug screening of cardiovascular diseases. It provided an alternative method for traditional in vitro screening, and produced potential clinical related drugs in a rapid and cost-effective way.


Subject(s)
Cardiovascular Diseases/metabolism , Disease Models, Animal , Membrane Glycoproteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/genetics , Animals , Blood Circulation , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Female , Gene Knockout Techniques , Heart Rate , Humans , Male , Membrane Glycoproteins/genetics , Mutation , Zebrafish/metabolism , Zebrafish Proteins/genetics
16.
Colloids Surf B Biointerfaces ; 196: 111345, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950841

ABSTRACT

Soybean protein isolate (SPI) powders were prepared at different ultrafine grinding time, and the functional and flavor properties of microparticulation SPI were evaluated. With extending ultrafine grinding time, a narrow and uniform particle size distribution in SPI powders was produced. The particle sizes of protein powders at grinding time 0, 2, 4, 6 and 8 h significantly reduced from 217 ± 16.5-137.5 ± 10.7 nm, while the absolute values of zeta-potential significantly increased from 25 ± 0.93-32.4 ± 117 mV (P < 0.05). The microstructure of SPI at grinding time 0-8 h changed from smooth to irregular. With prolonging the ultrafine grinding processing time, the solubility, foaming and emulsifying properties of SPI powders were improved, the content ofα-helix, ß-sheet and random coils increased, while ß-turn decreased. Furthermore, the ultrafine grinding time clearly influenced the volatile compounds of SPI powders. The main flavor compounds were aldehydes, alcohols, acids, ketones and alkanes. SPI powders for grinding time 2, 4, 6 and 8 h exhibited the higher total content of volatile compounds compared to that for 0 h. So the ultrafine grinding treatment at appropriate time could affect the functional and flavor properties of SPI.


Subject(s)
Flavoring Agents , Soybean Proteins , Particle Size , Powders , Solubility
17.
J Sci Food Agric ; 100(15): 5558-5568, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32596825

ABSTRACT

BACKGROUND: Ginger stem (GS) is a by-product of ginger processing. It is not directly edible as a feed or food, which leads to it being discarded as waste or burned. Accordingly, it is very important to develop new functional products in the food or feed industry as a result of high nutritional and medicinal values. In the present study, the structures and physicochemical properties of GS powders of different sizes were evaluated after ultrafine grinding by a vibrating mill. RESULTS: The ultrafine powders exhibited a smaller particle size and uniform distribution. Higher values in bulk density (from 1.07 ± 0.06 to 1.62 ± 0.08 g mL-1 ), oil holding capacity (from 3.427 ± 0.04 to 4.83 ± 0.03 g mL-1 ), and repose and slide angles (from 42.33 ± 1.52 to 54.36 ± 1.15° and 33.62 ± 0.75 to 47.27 ± 1.34°, respectively) of ultrafine GS powders were exhibited compared to coarse powders. With a reduced particle size, the solubility of ultrafine powders increased significantly (P < 0.05), whereas the water holding and swelling capacities decreased with a reduced particle size and then increased. Fourier transform infrared spectroscopy analysis showed that ultrafine grinding did not damage the main cellular structure of GS powder. The reduction of fiber length and particle size in GS was observed by light microscopy and scanning electron microscopy. The X-ray diffraction patterns demonstrated the crystallinity and the intensity of the peak in superfine GS powders. CONCLUSION: The present study suggests that ultrafine grinding treatments influence the structures and physicochemical properties of GS powders, and such changes would improve the effective utilization of GS in the food or feed industry. © 2020 Society of Chemical Industry.


Subject(s)
Plant Preparations/chemistry , Zingiber officinale/chemistry , Food Handling/methods , Particle Size , Plant Tubers/chemistry , Powders/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
18.
Adv Mater ; 32(3): e1805863, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31216098

ABSTRACT

Cluster materials have attracted much attention because of their unique chemical and physical properties, hitherto unseen in bulk materials. Inspired by the lipid self-assembly principle, a series of heterocluster Janus molecules (HCJMs) with atomic precision have been rationally designed and synthesized by connecting different clusters via covalent bonds for the construction of nanomaterials and nano-objects. Due to their amphiphilicity, HCJMs self-assemble into cluster-containing nanomaterials or nano-objects with versatile ordered structures beyond those observed in conventional crystals. Their hybrid composition and nanoscale size are also greatly advantageous in the study of their fine structure by electron microscopy techniques, and enable their formation mechanisms to be unraveled. Finally, the influence of the characteristics of the HCJMs on the structure and properties of the self-assembled nano-objects are explored comprehensively. This synthesis strategy will promote further development of cluster materials with advanced functions via rational molecular design toward the construction of hierarchical nanostructures via molecular self-assembly.

19.
Food Sci Biotechnol ; 28(6): 1637-1647, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31807336

ABSTRACT

The release of bioactive pigments could be potentially improved by enzyme degradation of plant cell wall polysaccharides. In this study, the objective was to evaluate enzyme type (cellulase and pectinase), pH values, hydrolysis temperature and time on the release of astaxanthin from Haematococcus pluvialis (H. pluvialis). The results showed that pre-treated H. pluvialis with enzymes could improve the separation yield of astaxanthin. Pectinase release rate of astaxanthin from H. pluvialis was significantly higher than cellulase (p < 0.05), and enzyme hydrolysis time was also shorter. The stability study of astaxanthin oleoresin and microcapsule during storage at different temperature, oxygen and illumination was found that the degradation rate of astaxanthin rose with increasing temperature and illumination time, and the retention in oxygen environment decreased. The stability of astaxanthin microcapsules was better than astaxanthin oleoresin.

20.
J Food Sci Technol ; 56(12): 5362-5373, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31749484

ABSTRACT

The quality characteristics of naan from flour products under various packaging methods stored at different temperatures (25, 4 and - 20 °C) for different time (0-49 days) were investigated. Packaging methods included ordinary plastic packaging (OPP), vacuum packaging (VP) and deoxygenation packaging (DP). Sensory value, acid value, moisture content and microbial count of naan during storage were evaluated. The results showed that the total demerit points of sensory of DP naan stored at 25 °C had considerably lower levels. The moisture content of naan in DP and VP at 25 °C during storage had not been affected, while in OPP increased; the acid values of naan increased, but in DP was the lowest; the total microbiological count (MC) of naan in OPP, VP and DP at 5th day reached 2.25, 3.04 and 1.99 log CFU g-1, respectively. At 4 and - 20 °C, the moisture content of naan in OPP, VP and DP during storage reduced, the acid values at storage the 38th day dramatically increased (p < 0.05), the MC slowly increased, but these in DP samples was lower. The Ultraviolet (UV) and microwave (MW) radiation time was varied to study its effect on the shelf life of naan at 25 °C. The moisture content of UV and MW treated naan were not significantly different from those of control naan (p > 0.05), but the demerit points, acid values and MC reduced, the shelf life of naan was extended. The combination of DP and MW methods was a better efficient way to reduced negative quality changes of naan during storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...