Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Leuk Res ; 141: 107499, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38640632

ABSTRACT

Acute myeloid leukemia (AML) is a hematopoietic malignancy with a high relapse rate and progressive drug resistance. Alternative polyadenylation (APA) contributes to post-transcriptional dysregulation, but little is known about the association between APA and AML. The APA quantitative trait locus (apaQTL) is a powerful method to investigate the relationship between APA and single nucleotide polymorphisms (SNPs). We quantified APA usage in 195 Chinese AML patients and identified 4922 cis-apaQTLs related to 1875 genes, most of which were newly reported. Cis-apaQTLs may modulate the APA selection of 115 genes through poly(A) signals. Colocalization analysis revealed that cis-apaQTLs colocalized with cis-eQTLs may regulate gene expression by affecting miRNA binding sites or RNA secondary structures. We discovered 207 cis-apaQTLs related to AML risk by comparing genotype frequency with the East Asian healthy controls from the 1000 Genomes Project. Genes with cis-apaQTLs were associated with hematological phenotypes and tumor incidence according to the PHARMGKB and MGI databases. Collectively, we profiled an atlas of cis-apaQTLs in Asian AML patients and found their association with APA selection, gene expression, AML risk, and complex traits. Cis-apaQTLs may provide insights into the regulatory mechanisms related to APA in AML occurrence, progression, and prognosis.

2.
ACS Nano ; 18(19): 12261-12275, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38683132

ABSTRACT

Cancer immunotherapy holds significant promise for addressing diverse malignancies. Nevertheless, its efficacy remains constrained by the intricate tumor immunosuppressive microenvironment. Herein, a light-triggered nanozyme Fe-TCPP-R848-PEG (Fe-MOF-RP) was designed for remodeling the immunosuppressive microenvironment. The Fe-TCPP-MOFs were utilized not only as a core catalysis component against tumor destruction but also as a biocompatible delivery vector of an immunologic agonist, improving its long circulation and tumor enrichment. Concurrently, it catalyzes the decomposition of H2O2 within the tumor, yielding oxygen to augment photodynamic therapy. The induced ferroptosis, in synergy with photodynamic therapy, prompts the liberation of tumor-associated antigens from tumor cells inducing immunogenic cell death. Phototriggered on-demand release of R848 agonists stimulated the maturation of dendritic cells and reverted the tumor-promoting M2 phenotypes into adoptive M1 macrophages, which further reshaped the tumor immunosuppressive microenvironment. Notably, the nanozyme effectively restrains well-established tumors, such as B16F10 melanoma. Moreover, it demonstrates a distal tumor-inhibiting effect upon in situ light treatment. What is more, in a lung metastasis model, it elicits robust immune memory, conferring enduring protection against tumor rechallenge. Our study presents a straightforward and broadly applicable strategy for crafting nanozymes with the potential to effectively thwart cancer recurrence and metastasis.


Subject(s)
Ferroptosis , Light , Tumor Microenvironment , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Ferroptosis/drug effects , Mice , Mice, Inbred C57BL , Photochemotherapy , Tumor Hypoxia/drug effects , Nanoparticles/chemistry , Immunotherapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/pathology , Cell Line, Tumor
3.
J Am Chem Soc ; 146(17): 11978-11990, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626322

ABSTRACT

Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.

4.
Heliyon ; 10(5): e27107, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434265

ABSTRACT

TTMV::RARA is a recently reported fusion gene associated with acute promyelocytic leukemia (APL), caused by the integration of torque teno mini virus (TTMV) genomic fragments into the second intron of the RARA gene. Currently, there have been only six documented cases, with clinical presentations showing significant variability. Although initial responses to all-trans retinoic acid (ATRA) treatment may be observed in patients with TTMV::RARA-APL, the overall prognosis remains unfavorable among infrequent reported cases. This article presents a pediatric case that manifested as PML::RARA-negative APL with central nervous system involvement at onset. The patient experienced both intramedullary and extramedullary relapse one year after undergoing allogeneic hematopoietic stem cell transplantation. Upon identification as TTMV::RARA-APL and subsequent administration of two rounds of ATRA-based treatment, the patient rapidly developed multiple RARA ligand-binding domain mutations and demonstrated extensive resistance to ATRA and various other therapeutic interventions. Additionally, the patient experienced ARID1A mutant clone expansion and progressed MYC-targeted gene activation. This case represents the first documentation of extramedullary involvement at both the initial diagnosis and relapse stages, emphasizing the intricate clinical features and challenges associated with the rapid accumulation of multiple ATRA-resistant mutations in TTMV::RARA-APL, characterizing it as a distinct and complex sub-entity of atypical APL.

5.
Adv Mater ; : e2401252, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549283

ABSTRACT

Sonodynamic therapy (SDT) is applied to bladder cancer (BC) given its advantages of high depth of tissue penetration and nontoxicity due to the unique anatomical location of the bladder near the abdominal surface. However, low electron-hole separation efficiency and wide bandgap of sonosensitizers limit the effectiveness of SDT. This study aims to develop a TiO2-Ru-PEG Schottky heterojunction sonosensitizer with high electron-hole separation and narrow bandgap for SDT in BC. Density functional theory (DFT) calculations and experiments collectively demonstrate that the bandgap of TiO2-Ru-PEG is reduced due to the Schottky heterojunction with the characteristic of crystalline-amorphous interface formed by the deposition of ruthenium (Ru) within the shell layer of TiO2. Thanks to the enhancement of oxygen adsorption and the efficient separation of electron-hole pairs, TiO2-Ru-PEG promotes the generation of reactive oxygen species (ROS) under ultrasound (US) irradiation, resulting in cell cycle arrest and apoptosis of bladder tumor cells. The in vivo results prove that TiO2-Ru-PEG boosted the subcutaneous and orthotopic bladder tumor models while exhibiting good safety. This study adopts the ruthenium complex for optimizing sonosensitizers, contributing to the progress of SDT improvement strategies and presenting a paradigm for BC therapy.

6.
Biomater Res ; 28: 0014, 2024.
Article in English | MEDLINE | ID: mdl-38549610

ABSTRACT

It is urgent to develop an alternative dynamic therapy-based method to overcome the limited efficacy of traditional therapy methods for bladder cancer and the damage caused to patients. Sonodynamic therapy (SDT) has the advantages of high tissue penetration, high spatiotemporal selectivity, and being non-invasive, representing an emerging method for eradicating deep solid tumors. However, the effectiveness of SDT is often hindered by the inefficient production of reactive oxygen species and the nondegradability of the sonosensitizer. To improve the anti-tumor effect of SDT on bladder cancer, herein, a BP-based heterojunction sonosensitizer (BFeSe2) was synthesized by anchoring FeSe2 onto BP via P-Se bonding to enhance the stability and the effect of SDT. As a result, BFeSe2 showed great cytotoxicity to bladder cancer cells under ultrasound (US) irradiation. BFeSe2 led to a notable inhibition effect on tumor growth in subcutaneous tumor models and orthotopic tumor models under US irradiation. In addition, BFeSe2 could also enhance T2-weighted magnetic resonance imaging (MRI) to achieve monitoring and guide treatment of bladder cancer. In general, BFeSe2 sonosensitizer integrates MRI functions for precise treatment, promising great clinical potential for the theranostics of bladder cancer.

8.
Int J Hematol ; 119(5): 564-572, 2024 May.
Article in English | MEDLINE | ID: mdl-38441775

ABSTRACT

OBJECTIVE: To describe the features of ETV6::ABL1 AML as well as the clinical treatment and outcomes. METHODS: Clinical data were collected from three patients diagnosed with ETV6::ABL1 AML at Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital. Their clinical and laboratory features were analyzed, and the treatment process and outcomes were described. Ten reported cases of ETV6::ABL1 AML from the literature were also included for analysis. RESULTS: The median age of the patients was 34 years, and 2 patients were male. No patient had a history of blood disorders before diagnosis. After relapse, they were referred to our hospital, where the ETV6::ABL1 gene was detected. Unfortunately, Patient 1 died rapidly after leukemia relapse due to severe infection. Patients 2 and 3 received salvage therapy with a dasatinib-containing regimen, followed by allo-HSCT, and are currently alive and disease-free. CONCLUSION: ETV6::ABL1 is a rare but recurrent genetic aberration in AML, and the combined use of fluorescence in situ hybridization and PCR can better identify this fusion gene. Patients carrying ETV6::ABL1 have a high relapse rate and a poor prognosis. TKIs are a reasonable treatment option for this group, and allo-HSCT may be curative.


Subject(s)
ETS Translocation Variant 6 Protein , Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-ets , Repressor Proteins , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Male , Proto-Oncogene Proteins c-ets/genetics , Adult , Oncogene Proteins, Fusion/genetics , Repressor Proteins/genetics , Female , Proto-Oncogene Proteins c-abl/genetics , Middle Aged , Treatment Outcome , Hematopoietic Stem Cell Transplantation
9.
Am J Hematol ; 99(5): 824-835, 2024 May.
Article in English | MEDLINE | ID: mdl-38321864

ABSTRACT

Two recent guidelines, the 5th edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) and the International Consensus Classification (ICC), were published to refine the diagnostic criteria of acute myeloid leukemia (AML). They both consider genomic features more extensively and expand molecularly defined AML subtypes. In this study, we compared the classifications of 1135 AML cases under both criteria. According to WHO-HAEM5 and ICC, the integration of whole transcriptome sequencing, targeted gene mutation screening, and conventional cytogenetic analysis identified defining genetic abnormalities in 89% and 90% of AML patients, respectively. The classifications displayed discrepancies in 16% of AML cases after being classified using the two guidelines, respectively. Both new criteria significantly reduce the number of cases defined by morphology and differentiation. However, their clinical implementation heavily relies on comprehensive and sophisticated genomic analysis, including genome and transcriptome levels, alongside the assessment of pathogenetic somatic and germline variations. Discrepancies between WHO-HAEM5 and ICC, such as the assignment of RUNX1 mutations, the rationality of designating AML with mutated TP53 as a unique entity, and the scope of rare genetic fusions, along with the priority of concurrent AML-defining genetic abnormalities, are still pending questions requiring further research for more elucidated insights.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Consensus , Mutation , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Genomics , World Health Organization
10.
Am J Hematol ; 99(5): 1005-1007, 2024 May.
Article in English | MEDLINE | ID: mdl-38410879

ABSTRACT

IRF2BP1 breaked in the middle of exon 1 at the c.322 position and fused with RARA intron 2 which is located at 3717 bp upstream of its exon 3. The fusion produced a new intron by forming a paired splicing donor GT at 9 bp downstream of RARA breakpoint and acceptor AG at the 5' end of RARA exon 3. The IRF2BP1::RARA fusion gene leads a fusion transcript involving IRF2BP1 exon 1 and RARA exon 3, linked by a 9-bp fragment derived from RARA intron 2. The patient with IRF2BP1::RARA has same clinical features of APL.


Subject(s)
Leukemia, Promyelocytic, Acute , Humans , Chromosomes, Human, Pair 17 , Exons/genetics , Leukemia, Promyelocytic, Acute/genetics , Oncogene Proteins, Fusion/genetics , Receptors, Retinoic Acid/genetics , Retinoic Acid Receptor alpha/genetics , Translocation, Genetic
11.
Cell Signal ; 116: 111057, 2024 04.
Article in English | MEDLINE | ID: mdl-38242268

ABSTRACT

Randall's plaque (RP) is derived from interstitial mineral deposition and is highly prevalent in renal calcium oxalate (CaOx) stone disease, which is predictive of recurrence. This study shows that histone deacetylase 6 (HDAC6) levels are suppressed in renal tubular epithelial cells in RP samples, in kidney tissues of hyperoxaluria rats, and in hyper-oxalate-treated or mineralized cultured renal tubular epithelial (MDCK) cells in vitro. Mineral deposition in MDCK cells was exacerbated by HDAC6 inhibition but alleviated by HDAC6 overexpression. Surprisingly, the expression of some osteogenic-associated proteins, were not increased along with the increasing of mineral deposition, and result of single-cell RNA sequencing of renal papillae samples revealed that epithelial cells possess lower calcific activity, suggesting that osteogenic-transdifferentiation may not have actually occurred in tubular epithelial cells despite mineral deposition. The initial mineral depositions facilitated by HDAC6 inhibitor were localized in extracellular dome rather than inside the cells, moreover, suppression of HDAC6 significantly increased the calcium content of co-cultured renal interstitial fibroblasts (NRK49F) and enhanced mineral deposition of indirectly co-cultured NRK49F cells, suggesting that HDAC6 may influence trans-MDCK monolayer secretion of mineral. Further experiments revealed that this regulatory role was partially alpha-tubulinLys40 acetylation dependent. Collectively, these results suggest that hyper-oxalate exposure led to HDAC6 suppression in renal tubular epithelial cells, which may contribute to interstitial mineral deposition by promoting alpha-tubulinLys40 acetylation. Therapeutic agents that influence HDAC6 activity may be beneficial in preventing RP and CaOx stone formation.


Subject(s)
Kidney Diseases , Tubulin , Animals , Rats , Acetylation , Calcium Oxalate , Epithelial Cells/metabolism , Histone Deacetylase 6/metabolism , Minerals , Tubulin/metabolism
13.
Mol Genet Genomic Med ; 12(1): e2333, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38083972

ABSTRACT

BACKGROUND: Intellectual disability is a prevalent neurodevelopmental disorder, with the majority of affected children exhibiting global developmental delay before the age of 5 years. In recent years, certain children have been found to carry homozygous variations of the EEF1D gene, leading to autosomal recessive intellectual disability. However, the pathogenicity of compound heterozygous variations in this gene remains largely unknown. METHODS: Trio whole-exome sequencing and copy number variation sequencing were done for the genetic etiological diagnosis of a 3-year and 11-month-old Chinese boy who presented with brachycephaly, severe to profound global developmental delay, and hypotonia in the lower limbs. RESULTS: In this case, compound heterozygous variants of the EEF1D gene were found in the child through trio whole-exome sequencing; one was a splice variant (NM_032378.6:c.1905+1G>A) inherited from his father, and the other was a nonsense variant (NM_032378.6:c.676C>T) inherited from his mother. The nonsense variant leads to the production of a premature termination (p.Gln226*). These variations have the ability to explain the clinical phenotypes of the child. CONCLUSIONS: Our study expands the variation spectrum and provides compelling evidence for EEF1D as a candidate gene for autosomal recessive intellectual disability. However, due to the deficient number of reported cases, researchers need to further study EEF1D and supplement the clinical phenotypes and treatment measures.


Subject(s)
Intellectual Disability , Nervous System Malformations , Neurodevelopmental Disorders , Child , Male , Humans , Child, Preschool , Infant , Intellectual Disability/genetics , DNA Copy Number Variations , Inheritance Patterns , China , Peptide Elongation Factor 1/genetics
14.
Chin Med J (Engl) ; 137(7): 859-870, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-37565822

ABSTRACT

BACKGROUND: Adamantinomatous craniopharyngioma (ACP) is the commonest pediatric sellar tumor. No effective drug is available and interpatient heterogeneity is prominent. This study aimed to identify distinct molecular subgroups of ACP based on the multi-omics profiles, imaging findings, and histological features, in order to predict the response to anti-inflammatory treatment and immunotherapies. METHODS: Totally 142 Chinese cases diagnosed with craniopharyngiomas were profiled, including 119 ACPs and 23 papillary craniopharyngiomas. Whole-exome sequencing (151 tumors, including recurrent ones), RNA sequencing (84 tumors), and DNA methylome profiling (95 tumors) were performed. Consensus clustering and non-negative matrix factorization were used for subgrouping, and Cox regression were utilized for prognostic evaluation, respectively. RESULTS: Three distinct molecular subgroups were identified: WNT, ImA, and ImB. The WNT subgroup showed higher Wnt/ß-catenin pathway activity, with a greater number of epithelial cells and more predominantly solid tumors. The ImA and ImB subgroups had activated inflammatory and interferon response pathways, with enhanced immune cell infiltration and more predominantly cystic tumors. Mitogen-activated protein kinases (MEK/MAPK) signaling was activated only in ImA samples, while IL-6 and epithelial-mesenchymal transition biomarkers were highly expressed in the ImB group, mostly consisting of children. The degree of astrogliosis was significantly elevated in the ImA group, with severe finger-like protrusions at the invasive front of the tumor. The molecular subgrouping was an independent prognostic factor, with the WNT group having longer event-free survival than ImB (Cox, P = 0.04). ImA/ImB cases were more likely to respond to immune checkpoint blockade (ICB) therapy than the WNT group ( P <0.01). In the preliminary screening of subtyping markers, CD38 was significantly downregulated in WNT compared with ImA and ImB ( P = 0.01). CONCLUSIONS: ACP comprises three molecular subtypes with distinct imaging and histological features. The prognosis of the WNT type is better than that of the ImB group, which is more likely to benefit from the ICB treatment.


Subject(s)
Craniopharyngioma , Pituitary Neoplasms , Humans , Child , Craniopharyngioma/genetics , Craniopharyngioma/metabolism , Craniopharyngioma/pathology , Prognosis , Multiomics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Wnt Signaling Pathway
16.
Fish Shellfish Immunol ; 145: 109332, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142829

ABSTRACT

Nitric oxide (NO) is a signaling molecule and immune effector produced by the nitric oxide synthases (NOS), which involved to various physiological processes of animals. In marine bivalves, hemocytes play important roles in antimicrobial innate immune response. Although hemocyte-derived NO has been detected in several bivalves, the immune function of hemocyte-derived NO is not well understood. Here, we investigated the antibacterial response of hemocyte-derived NO in the blood clam Tegillarca granosa. Two types of hemocytes including erythrocytes and granulocytes were isolated by Percoll density gradient centrifugation, their NO production and TgNOS expression level were analyzed. The results showed that NO was mainly produced in granulocytes and almost no detected in erythrocytes. The granulocytes showed significantly higher NO level and TgNOS expression level than the erythrocytes. And the TgNOS expression level was significantly increased in granulocytes after Vibro parahemolyticus challenge. In addition, the NO donor sodium nitroprusside (SNP) significantly increased the NO production of hemocytes to kill pathogenic bacteria. In summary, the results revealed that granulocytes-derived NO play vital roles in the antimicrobial immune response of the blood clam.


Subject(s)
Anti-Infective Agents , Arcidae , Bivalvia , Animals , Nitric Oxide , Immunity, Innate , Anti-Bacterial Agents , Granulocytes , Hemocytes
17.
Hear Res ; 442: 108946, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150794

ABSTRACT

Sound source localization in "cocktail-party" situations is a remarkable ability of the human auditory system. However, the neural mechanisms underlying auditory spatial attention are still largely unknown. In this study, the "cocktail-party" situations are simulated through multiple sound sources and presented through head-related transfer functions and headphones. Furthermore, the scalp time-varying network of auditory spatial attention is constructed using the high-temporal resolution electroencephalogram, and its network properties are measured quantitatively using graph theory analysis. The results show that the time-varying network of auditory spatial attention in "cocktail-party" situations is more complex and partially different than in simple acoustic situations, especially in the early- and middle-latency periods. The network coupling strength increases continuously over time, and the network hub shifts from the posterior temporal lobe to the parietal lobe and then to the frontal lobe region. In addition, the right hemisphere has a stronger network strength for processing auditory spatial information in "cocktail-party" situations, i.e., the right hemisphere has higher clustering levels, higher transmission efficiency, and more node degrees during the early- and middle-latency periods, while this phenomenon disappears and appears symmetrically during the late-latency period. These findings reveal different network patterns and properties of auditory spatial attention in "cocktail-party" situations during different periods and demonstrate the dominance of the right hemisphere in the dynamic processing of auditory spatial information.


Subject(s)
Scalp , Sound Localization , Humans , Acoustic Stimulation/methods , Temporal Lobe , Attention , Auditory Perception
18.
Discov Oncol ; 14(1): 215, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019357

ABSTRACT

PURPOSE: To investigate the influence of ß-arrestin2 on the docetaxel resistance in castration-resistant prostate cancer (CRPC) and elucidate the underlying molecular mechanisms. METHODS: PC3 and DU145 cells with stable ß-arrestin2 overexpression and C4-2 cells with stable ß-arrestin2 knockdown, were constructed via using lentivirus and puromycin selection. MTT and colony formation assays were carried out to investigate the effect of ß-arrestin2 expression on the docetaxel resistance of CRPC cells. Glycolysis analysis was used to assess the glycolytic capacity modulated by ß-arrestin2. GO enrichment analysis, gene set enrichment analysis and Spearman correlation test were carried out to explore the potential biological function and mechanism via using public data from GEO and TCGA. The expressions of PKM2, Phospho-PKM2, Phospho-ERK1/2 and hnRNP A1 were detected by western blot. Functional blocking experiments were carried out to confirm the roles of PKM2 and hnRNP A1 in the regulation of ß-arrestin2's biological functions via silencing PKM2 or hnRNP A1 expression in cells with stable ß-arrestin2 overexpression. Finally, nude mice xenograft models were established to confirm the experimental results of cell experiments. RESULTS: ß-Arrestin2 significantly decreased the sensitivity of CRPC cells to docetaxel stimulation, through enhancing the phosphorylation and expression of PKM2. Additionally, ß-arrestin2 increased PKM2 phosphorylation via the ERK1/2 signaling pathway and induced PKM2 expression in a post-transcriptional manner through an hnRNP A1-dependent PKM alternative splicing mechanism, rather than by inhibiting its ubiquitination degradation. CONCLUSION: Our findings indicate that the ß-arrestin2/hnRNP A1/PKM2 pathway could be a promising target for treating docetaxel-resistant CRPC.

19.
BMC Genomics ; 24(1): 700, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990147

ABSTRACT

BACKGROUND: ETS transcription factors, known as the E26 transformation-specific factors, assume a critical role in the regulation of various vital biological processes in animals, including cell differentiation, the cell cycle, and cell apoptosis. However, their characterization in mollusks is currently lacking. RESULTS: The current study focused on a comprehensive analysis of the ETS genes in blood clam Tegillarca granosa and other mollusk genomes. Our phylogenetic analysis revealed the absence of the SPI and ETV subfamilies in mollusks compared to humans. Additionally, several ETS genes in mollusks were found to lack the PNT domain, potentially resulting in a diminished ability of ETS proteins to bind target genes. Interestingly, the bivalve ETS1 genes exhibited significantly high expression levels during the multicellular proliferation stage and in gill tissues. Furthermore, qRT-PCR results showed that Tg-ETS-14 (ETS1) is upregulated in the high total hemocyte counts (THC) population of T. granosa, suggesting it plays a significant role in stimulating hemocyte proliferation. CONCLUSION: Our study significantly contributes to the comprehension of the evolutionary aspects concerning the ETS gene family, while also providing valuable insights into its role in fostering hemocyte proliferation across mollusks.


Subject(s)
Arcidae , Bivalvia , Humans , Animals , Phylogeny , Arcidae/genetics , Arcidae/metabolism , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Genome , Bivalvia/genetics
20.
Small Methods ; 7(11): e2301049, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37817364

ABSTRACT

Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Surface Plasmon Resonance , Colorimetry/methods , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...