Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Sensors (Basel) ; 23(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37514848

ABSTRACT

In this paper, we focus on the event-triggered robust state estimation problems for nonlinear networked systems with constant measurement delays against denial-of-service (DoS) attacks. The computation of the extended Kalman filter (EKF) generates errors of linearization approximations, which can result in increased state estimation errors, and subsequently amplifies the linearization errors. DoS attacks interfere with the transmission of measurements sent to the remote robust state estimator by overloading the communication networks, while the communication rate of the communication channel is constrained. Therefore, an event-triggered robust state estimation algorithm based on sensitivity penalization with an explicit packet arrival parameter is derived to defend against DoS attacks and linearization errors. Meanwhile, the presence of measurement delays precludes the direct use of conventional state estimation algorithms, prompting us to devise an innovative state augmentation method. The results of the numerical simulations show that the proposed robust state estimator can appreciably improve the accuracy of state estimation.

2.
Antioxidants (Basel) ; 11(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36139903

ABSTRACT

Strawberry (Fragaria × ananassa) fruits are rich in ascorbic acid (AsA) and anthocyanin, which are essential antioxidants for human health. However, the underlying regulatory mechanism of these antioxidant accumulation, especially AsA accumulation in strawberry fruits, remains largely unknown. In this study, we identified FaAKR23 was a regulator of AsA and anthocyanin accumulation. We transiently expressed FaAKR23 in strawberry fruits and conducted metabolic and molecular analyses to explore the role of FaAKR23 in AsA and anthocyanin accumulation. Transient silencing of FaAKR23 (FaAKR23-RNAi) in strawberry fruits significantly decreased the AsA and anthocyanin contents compared with control (empty vector-RNAi, EV-RNAi). Correspondingly, expression of some structural genes and regulatory factors involved in these two antioxidants' accumulation was dramatically repressed. In addition, transcriptome analysis of EV-RNAi and FaAKR23-RNAi fruits suggested that FaAKR23 was also involved in starch and sucrose metabolism as well as plant-pathogen interaction. Overall, these results not only provide the coordinated regulatory function of FaAKR23 on AsA and anthocyanin accumulation but also offer a promising candidate gene for strawberry breeding with high antioxidants.

3.
Front Plant Sci ; 13: 954505, 2022.
Article in English | MEDLINE | ID: mdl-35873967

ABSTRACT

Ascorbic acid (AsA) is an important antioxidant for scavenging reactive oxygen species and it is essential for human health. Strawberry (Fragaria × ananassa) fruits are rich in AsA. In recent years, strawberry has been regarded as a model for non-climacteric fruit ripening. However, in contrast to climacteric fruits, such as tomato, the regulatory mechanism of AsA accumulation in strawberry fruits remains largely unknown. In this study, we first identified 125 AsA metabolism-related genes from the cultivated strawberry "Camarosa" genome. The expression pattern analysis using an available RNA-seq data showed that the AsA biosynthetic-related genes in the D-mannose/L-galactose pathway were downregulated remarkably during fruit ripening which was opposite to the increasing AsA content in fruits. The D-galacturonate reductase gene (GalUR) in the D-Galacturonic acid pathway was extremely upregulated in strawberry receptacles during fruit ripening. The FaGalUR gene above belongs to the aldo-keto reductases (AKR) superfamily and has been proposed to participate in AsA biosynthesis in strawberry fruits. To explore whether there are other genes in the AKR superfamily involved in regulating AsA accumulation during strawberry fruit ripening, we further implemented a genome-wide analysis of the AKR superfamily using the octoploid strawberry genome. A total of 80 FaAKR genes were identified from the genome and divided into 20 subgroups based on phylogenetic analysis. These FaAKR genes were unevenly distributed on 23 chromosomes. Among them, nine genes showed increased expression in receptacles as the fruit ripened, and notably, FaAKR23 was the most dramatically upregulated FaAKR gene in receptacles. Compared with fruits at green stage, its expression level increased by 142-fold at red stage. The qRT-PCR results supported that the expression of FaAKR23 was increased significantly during fruit ripening. In particular, the FaAKR23 was the only FaAKR gene that was significantly upregulated by abscisic acid (ABA) and suppressed by nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker), indicating FaAKR23 might play important roles in ABA-mediated strawberry fruit ripening. In a word, our study provides useful information on the AsA metabolism during strawberry fruit ripening and will help understand the mechanism of AsA accumulation in strawberry fruits.

4.
Mitochondrial DNA B Resour ; 7(5): 778-779, 2022.
Article in English | MEDLINE | ID: mdl-35558171

ABSTRACT

Zelkova schneideriana Hand-Mazz is a second-class key protected wild plant in China. Here, the complete mitochondrial genome of Zelkova schneideriana Hand-Mazz was sequenced using Nanopore Sequel and Illumina NovaSeq platform. The mitochondrial genome was assembled into three circular-mapping molecules with the genome sizes of 154,640 bp, 192,388 bp and 146,907 bp, including 36 protein-coding genes, 19 tRNA genes, and 3 rRNA genes. Phylogenetic analysis indicated that Zelkova schneideriana Hand-Mazz is close with Hemiptelea davidii, a species in same Ulmaceae Mirb.

5.
Front Surg ; 9: 1024619, 2022.
Article in English | MEDLINE | ID: mdl-36684121

ABSTRACT

Objective: Trigeminal neuralgia (TN) is one of the leading causes of facial pain and seriously affects patients' quality of life. Foramen ovale (FO) radiofrequency thermocoagulation is a classic approach for the treatment of TN that has failed pharmacological therapy. This study summarized the safety and efficacy of transforaminal radiofrequency thermocoagulation for TN by comparing puncture approaches or guidance techniques, thereby providing higher-quality clinical evidence. Methods: Databases including PubMed, Embase, Cochrane Library, CNKI, and Wanfang were searched for relevant studies published before May 2022. Relevant data were extracted for analysis to compare methodological variables and clinical outcomes. Results: This meta-analysis included 27 studies with a total of 1,897 patients. In terms of puncture approaches, FO had a significant advantage in reducing VAS at 12 months postoperatively (P = 0.019) and efficacy (P = 0.043). However, FO performed poorly on complications (P < 0.001), operation time (P < 0.001), and the number of needle adjustments (P < 0.001). Regarding the guidance techniques, the adjunctive use of guidance techniques could reduce patients' 6-month VAS (P < 0.001) and 12-month VAS (P < 0.001), improve the efficacy (P = 0.032), reduce recurrence rates (P = 0.001), shorten operation times (P < 0.001), decrease times of intraoperative fluoroscopy (P < 0.001), and improve the success of the first puncture (P < 0.001). Conclusion: FO radiofrequency thermocoagulation has advantages in efficacy it can still better relieve the pain of patients 12 months postoperatively. However, FO has disadvantages in complications, recurrences, and operation time. The adjunctive use of guidance techniques has a positive effect on treatment efficacy and safety during FO radiofrequency thermocoagulation. However, the results still require large samples and high-quality randomized clinical trials to confirm.

6.
Nat Commun ; 12(1): 5515, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34535670

ABSTRACT

Porous electrodes with extraordinary capacitances in liquid electrolytes are oftentimes incompetent when gel electrolyte is applied because of the escalating ion diffusion limitations brought by the difficulties of infilling the pores of electrode with gels. As a result, porous electrodes usually exhibit lower capacitance in gel electrolytes than that in liquid electrolytes. Benefiting from the swift ion transport in intrinsic hydrated nanochannels, the electrochemical capacitance of the nanofluidic voidless electrode (5.56% porosity) is nearly equal in gel and liquid electrolytes with a difference of ~1.8%. In gel electrolyte, the areal capacitance reaches 8.94 F cm-2 with a gravimetric capacitance of 178.8 F g-1 and a volumetric capacitance of 321.8 F cm-3. The findings are valuable to solid-state electrochemical energy storage technologies that require high-efficiency charge transport.

7.
Mitochondrial DNA B Resour ; 6(7): 1951-1952, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34179477

ABSTRACT

Fragaria orientalis Lozinsk. is valuable germplasm material for cross breeding in Fragaria. In this study, we assembled the complete mitochondrial genome of F. orientalis using a combination of Illumina data and Nanopore data. The mitochondrial genome was 275,143 bp in length, including 29 protein-coding genes, 20 tRNA genes, and three rRNA genes, with a total GC content 45.23%. Seven protein-coding genes contained introns, and three were trans-spliced. Phylogenetic analysis indicated that F. orientalis is making a sister clade to the Amygdaloideae species. The complete mitochondrial genome of F. orientalis reported in this study will improve our understanding of Fragaria evolution.

8.
Genomics ; 113(3): 1170-1179, 2021 05.
Article in English | MEDLINE | ID: mdl-33705887

ABSTRACT

Complete chloroplast genomes of ten wild Fragaria species native to China were sequenced. Phylogenetic analysis clustered Fragaria species into two clades: The south clade (F. iinumae, F. chinensis, F. pentaphylla, F. nilgerrensis, F. daltoniana, F. corymbosa, F. moupinensis, F. tibetica, F. nipponica, F. gracilis, and F. nubicola and north clade (F. viridis, F. orientalis, F. moschata, F. mandshurica, F. vesca, F. chiloensis, F. virginiana, and F. × ananassa), while F. iinumae is the oldest extant species. Molecular clock analysis suggested present Fragaria species share a common ancestor 3.57 million years ago (Ma), F. moschata and octoploid species evolve 0.89 and 0.97 Ma, respectively, but F. moschata be not directly involved in current octoploid species formation. Drastic global temperature change since the Palaeocene-Eocene, approx. 55 Ma, especially during uplifting of the Qinghai-Tibet plateau and quaternary glaciation may have driven the formation of Fragaria, separation of two groups and polyploidization.


Subject(s)
Fragaria , Genome, Chloroplast , Biodiversity , Fragaria/genetics , Genome, Plant , Phylogeny , Polyploidy , Temperature
9.
J Genet ; 992020.
Article in English | MEDLINE | ID: mdl-32089527

ABSTRACT

The base composition of the chloroplast genes is of great interest because they play a highly significant role in the evolutionary development of the plants. Evaluation of the 48 chloroplast protein-coding genes of Hemiptelea davidii showed that the average GC content was about 37.32%, while at the third codon base position alone the average GC content was only 27.80%. The 48 genes were classified into five groups based on the gene function and each group displayed specific codon characteristics. Based on the relative synonymous codon usage analysis, a total of 30 high-frequency codons and 11 optimal codons were identified, most of them ended with A or T. Neutrality plot, ENC-plot and PR2-plot analyses showed that the codon usage bias of the chloroplast genes of H. davidii was greatly influenced by natural selection pressures. Meanwhile, the frequency of codon usage of chloroplast genes among different plant species displayed similarities, with some synonymous codons were preferred to be used in H. davidii. In this study, the codon usage pattern of the chloroplast protein coding genes of H. davidii provides us with a better understanding of the expression of chloroplast genes, and may advice the future molecular breeding programmes.


Subject(s)
Codon Usage , Genes, Chloroplast , Rosales/genetics , Base Composition , Evolution, Molecular , Genome, Chloroplast , Selection, Genetic
10.
J Neurovirol ; 25(4): 457-463, 2019 08.
Article in English | MEDLINE | ID: mdl-31140131

ABSTRACT

Varicella-zoster virus (VZV) leads to chicken pox on primary infection and herpes zoster on reactivation. Recent studies suggest that microRNA2911 (MIR2911), honeysuckle (HS)-encoded atypical microRNA, has potential as a therapeutic agent against influenza and EV71 virus infections. Here, we report that MIR2911 directly inhibits VZV replication by targeting the IE62 gene. The luciferase reporter assay and bioinformatics prediction revealed that MIR2911 could target the IE62 gene of VZV. The VZV-encoded IE62 protein expression was inhibited significantly by synthetic MIR2911, while the expression of the mutants, whose MIR2911-binding sites were modified, was not inhibited. The RNA extracted from HS decoction and synthetic MIR2911 considerably suppressed VZV infection. However, it did not influence viral replication of a mutant virus with alterations in the nucleotide sequences of IE62. At the same time, the RNA extracted from HS decoction treated with the anti-MIR2911 antagomir could not inhibit the VZV replication, demonstrating that VZV replication was specifically and sufficiently inhibited by MIR2911. These results indicated that, by targeting the IE62 gene, MIR2911 may effectively inhibit VZV replication. Our results also suggest a potential novel strategy for the treatment and prevention of diseases caused by VZV infection.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 3, Human/drug effects , Immediate-Early Proteins/genetics , Lonicera/chemistry , MicroRNAs/genetics , RNA, Plant/genetics , Trans-Activators/genetics , Viral Envelope Proteins/genetics , Antagomirs/genetics , Antagomirs/metabolism , Antiviral Agents/isolation & purification , Antiviral Agents/metabolism , Cell Line , Drugs, Chinese Herbal/chemistry , Embryo, Mammalian , Fibroblasts/drug effects , Fibroblasts/virology , Gene Expression Regulation , Genes, Reporter , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/metabolism , Humans , Immediate-Early Proteins/antagonists & inhibitors , Immediate-Early Proteins/metabolism , Luciferases/genetics , Luciferases/metabolism , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Mutation , RNA, Plant/antagonists & inhibitors , RNA, Plant/metabolism , Trans-Activators/antagonists & inhibitors , Trans-Activators/metabolism , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism , Virus Replication
11.
Int J Biol Macromol ; 130: 50-57, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30797010

ABSTRACT

Expansins play a pivotal role in plant adaptation to environmental stress via cell wall loosening. To evaluate the roles of expansin in response to different environmental stress conditions, the expansin gene PttEXPA8 from Populus tomentosa was transformed into tobacco. Analysis of physiological indices demonstrated the transgenic plants with improved resistance to heat, drought, salt, cold, and cadmium stress but to different extents. In mature plants, PttEXPA8 exerted the greatest effect on heat stress, with a response index value of 137.46%, followed by drought, cadmium, cold, and salt stress with response index values of 101.04%, 70.61%, 69.95%, and 54.68%, respectively. Over-expression of PttEXPA8 resulted in differential responses in physiological indices to the stresses. Soluble sugar content showed the highest response to the stresses, with an average response index value of 29.29%, whereas the absolute response index value for malondialdehyde content, relative electrolyte leakage, chlorophyll content, and superoxide dismutase activity ranged from 11.01% to 19.21%. The present results provide insight into the roles of expansin in stress resistance in Populus.


Subject(s)
Nicotiana/genetics , Nicotiana/physiology , Plant Proteins/genetics , Populus/genetics , Stress, Physiological , Plants, Genetically Modified , Seedlings/growth & development , Nicotiana/growth & development
12.
Mitochondrial DNA B Resour ; 4(2): 2721-2722, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-33365699

ABSTRACT

Hemiptelea davidii (Hance) Planch is a potential valuable forest tree in arid sandy environments. Here, the complete mitochondrial genome of H. davidii was assembled using a combination of the PacBio Sequel data and the Illumina Hiseq data. The mitochondrial genome is 460,941 bp in length, including 37 protein-coding genes, 19 tRNA genes, and three rRNA genes. The GC content of the whole mitochondrial genome is 44.84%. Phylogenetic analyses indicated that H. davidii is close with Cannabis and Morus species.

13.
Int J Biol Macromol ; 116: 676-682, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29758311

ABSTRACT

As important cell wall proteins in plants, expansins are involved in a serious of abiotic stress resistance such as drought, heat, salt, even heavy metals. To understand the role of expansins in cadmium (Cd) stress, we analyzed the expression patterns of 36 expansin genes in Populus tomentosa. A Cd-induced expansin gene, PtoEXPA12, was identified, cloned, and transformed into tobacco plants. After treatment with Cd, the transgenic plants showed stronger symptoms of Cd toxicity as to the wild-type tobacco plants. Further physiological tests showed that the transformants had higher relative electrolyte leakage and superoxide dismutase activity, more malondialdehyde and H2O2 content, and lower chlorophyll content in Cd stress. Cd content measurement showed it is 1.40-2.07-fold higher and 1.29-1.38-fold higher separately in roots and shoots of transgenic plants than those in wild-type plants, while the transfer coefficient value kept invariably even decreased. Therefore, PtoEXPA12 was really involved in Cd uptake and accumulation, and led to Cd toxicity of cells. It would be a potentially applicable part in phytoremediation system.


Subject(s)
Cadmium/metabolism , Nicotiana , Plant Proteins , Plants, Genetically Modified , Populus/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism
14.
Int J Biol Macromol ; 113: 655-661, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29501753

ABSTRACT

Heavy metal ATPase (HMA) plays an important role in phytoremediation via long-distance transportation from root to shoot. In this report, we identified a heavy metal ATPase gene, PtoHMA5, from Populus tomentosa Carr. Its encoded peptide consists of 967 amino acids and has eight trans-membrane motifs inside. Tobacco plants were transformed with this gene via Agrobacterium tumefaciens-mediated method. After exposure to 50mg/LCdCl2 for 10d, the transgenic lines displayed higher cadmium accumulation in leaves than did the wild-type plants with an absolute increase of 25.04%, while the transfer coefficient increased by 16.01%-43.25%. Physiological testing including assessment of relative electrolytic leakage (REL), malondialdehyde (MDA) content, and chlorophyll content revealed that the transgenic lines were seriously affected when compared with the wild-type plants. In summary, PtoHMA5 is really involved in cadmium transport from root to shoot but is not associated with the removal of cadmium toxicity.


Subject(s)
Adenosine Triphosphatases/genetics , Cadmium/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Populus/enzymology , Populus/genetics , Soil Pollutants/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Base Sequence , Biodegradation, Environmental , Biological Transport , Cadmium/isolation & purification , Gene Expression , Plants, Genetically Modified , Soil Pollutants/isolation & purification , Transformation, Genetic
15.
ISA Trans ; 74: 67-76, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29397956

ABSTRACT

A decentralized state estimator is derived for the spatially interconnected systems composed of many subsystems with arbitrary connection relations. An optimization problem on the basis of linear matrix inequality (LMI) is constructed for the computations of improved subsystem parameter matrices. Several computationally effective approaches are derived which efficiently utilize the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, this decentralized state estimator is proved to converge to a stable system and obtain a bounded covariance matrix of estimation errors under certain conditions. Numerical simulations show that the obtained decentralized state estimator is attractive in the synthesis of a large-scale networked system.

16.
Int J Biol Macromol ; 108: 704-709, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29197572

ABSTRACT

Metallothioneins (MTs) are known for their heavy metal deoxidation during phytoremediation. To estimate their roles in the cadmium (Cd) hyperaccumulator Phytolacca americana L., three MT genes, PaMT3-1, PaMT3-2 and PaMT3-3, belonging to the MT3 subfamily were cloned. They separately encoded 63, 65 and 65 amino acids, containing12, 10 and 11 cysteines (Cys), respectively. Each gene was individually transformed and expressed in Escherichia coli cells. A Cd-resistance assay showed that the recombinant strains had enhanced survival rates, especially those containing PaMT3-1 and PaMT3-3. Additionally, the recombinant strains were high Cd accumulators, with the recombinant PaMT3-1's maximum accumulation being 2.16 times that of the empty vector strains. The numbers of cysteines and the structures of MT proteins were associated with the Cd enrichment and resistance capabilities. PaMT3-1 could be an effective gene resource in future plant Cd remediation-related breeding programs.


Subject(s)
Cadmium/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Phytolacca americana/genetics , Phytolacca americana/metabolism , Amino Acid Sequence , Cloning, Molecular , Gene Expression Regulation, Plant , Metallothionein/chemistry , Metals, Heavy/metabolism , Models, Molecular , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation , Recombinant Proteins , Sequence Analysis, DNA , Stress, Physiological
17.
Huan Jing Ke Xue ; 36(2): 576-83, 2015 Feb.
Article in Chinese | MEDLINE | ID: mdl-26031085

ABSTRACT

Catalyst supported on pyrite was prepared by the impregnation method to enhance the activity of catalyst and characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). Some Fe2O3 and CoFe2O4 species were formed on the surface of pyrite. Synthetized catalyst was used to catalyze H2O2 oxidative discoloration of azo dye. Under the conditions of the catalyst adding dosage of 3 g x L (-1), H2O2 adding dosageof 0.3 mL x L(-1), and the oxidation reaction timeof 1 h, results showed that about 99.8% of color removal rate and 58.4% of TOC removal rate could be achieved. The active ingredients of catalyst were Fe2O3 and CoFe2O4. Hydroxyl radical was determined during the reaction by ESR technology, the chromophore of dyes could be destroyed with 1 min, and small molecular substances might be produced during the process according to the spectrum analysis. Reaction with wide pH ranges is beneficial to overcome the limitation of traditional Fenton reactions. This technology might be used as a potential alternative for treatment of recalcitrant wastewater.


Subject(s)
Coloring Agents/chemistry , Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Water Purification/methods , Catalysis , Cations , Iron , Oxidation-Reduction , Sulfides , Wastewater , Water , Water Pollutants, Chemical , X-Ray Diffraction
18.
PLoS One ; 9(6): e99842, 2014.
Article in English | MEDLINE | ID: mdl-24932973

ABSTRACT

Chinese jujube (Ziziphus jujuba Mill, 2n = 2× = 24, Rhamnaceae) is an economically important Chinese native species. It has high nutritional value, and its medicinal properties have led to extensive use in traditional oriental medicine. The characterization of genotypes using molecular markers is important for genetic studies and plant breeding. However, few simple sequence repeat (SSR) markers are available for this species. In this study, 1,488 unique SSR clones were isolated from Z. jujuba 'Dongzao' using enriched genomic libraries coupled with a three-primer colony PCR screening strategy, yielding a high enrichment rate of 73.3%. Finally, 1,188 (80.87%) primer pairs were amplified successfully in the size expected for 'Dongzao'. A total of 350 primer pairs were further selected and evaluated for their ability to detect polymorphisms across a panel of six diverse cultivars; among these, 301 primer pairs detected polymorphisms, and the polymorphism information content (PIC) value across all loci ranged from 0.15 to 0.82, with an average of 0.52. An analysis of 76 major cultivars employed in Chinese jujube production using 31 primer pairs revealed comparatively high genetic diversity among these cultivars. Within-population differences among individuals accounted for 98.2% of the observed genetic variation. Neighbor-joining clustering divided the cultivars into three main groups, none of which correspond to major geographic regions, suggesting that the genetics and geographical origin of modern Chinese jujube cultivars might not be linked. The current work firstly reports the large-scale development of Chinese jujube SSR markers. The development of these markers and their polymorphic information represent a significant improvement in the available Chinese jujube genomic resources and will facilitate both genetic and breeding applications, further accelerating the development of new cultivars.


Subject(s)
DNA, Plant/isolation & purification , Genetic Variation , Microsatellite Repeats/genetics , Ziziphus/genetics , China , DNA Primers/metabolism , DNA, Plant/genetics , Gene Library , Genetic Loci , Nucleotide Motifs/genetics , Phylogeny , Polymorphism, Genetic , Repetitive Sequences, Nucleic Acid/genetics
19.
PLoS One ; 9(2): e87381, 2014.
Article in English | MEDLINE | ID: mdl-24516551

ABSTRACT

Siberian apricot (Prunus sibirica L.), an ecologically and economically important tree species with a high degree of tolerance to a variety of extreme environmental conditions, is widely distributed across the mountains of northeastern and northern China, eastern and southeastern regions of Mongolia, Eastern Siberia, and the Maritime Territory of Russia. However, few studies have examined the genetic diversity and population structure of this species. Using 31 nuclear microsatellites, we investigated the level of genetic diversity and population structure of Siberian apricot sampled from 22 populations across China. The number of alleles per locus ranged from 5 to 33, with an average of 19.323 alleles. The observed heterozygosity and expected heterozygosity ranged from 0.037 to 0.874 and 0.040 to 0.924 with average values of 0.639 and 0.774, respectively. A STRUCTURE-based analysis clustered all of the populations into four genetic clusters. Significant genetic differentiation was observed between all population pairs. A hierarchical analysis of molecular variance attributed about 94% of the variation to within populations. No significant difference was detected between the wild and semi-wild groups, indicating that recent cultivation practices have had little impact on the genetic diversity of Siberian apricot. The Mantel test showed that the genetic distance among the populations was not significantly correlated with geographic distance (r = 0.4651, p = 0.9940). Our study represents the most comprehensive investigation of the genetic diversity and population structure of Siberian apricot in China to date, and it provides valuable information for the collection of genetic resources for the breeding of Siberian apricot and related species.


Subject(s)
Genetic Loci , Genetic Variation , Genome, Plant , Prunus/genetics , Alleles , Cell Nucleus/genetics , China , Microsatellite Repeats
20.
Appl Plant Sci ; 1(3)2013 Mar.
Article in English | MEDLINE | ID: mdl-25202522

ABSTRACT

PREMISE OF THE STUDY: Microsatellite loci were developed for Prunus sibirica to investigate genetic diversity, population genetic structure, and marker-assisted selection of late-blooming cultivars in the breeding of P. sibirica. • METHODS AND RESULTS: Using a magnetic bead enrichment strategy, 19 primer pairs were developed and characterized across 40 individuals from three P. sibirica wild populations and six individuals of P. armeniaca. The number of alleles per locus varied from three to 11 and the observed and expected heterozygosities ranged from 0.063 to 0.917 and 0.295 to 0.876, respectively, in the three P. sibirica wild populations. All primer pairs could be successfully amplified in six individuals of P. armeniaca. • CONCLUSIONS: These microsatellite primer pairs should be useful for population genetics, germplasm identification, and marker-assisted selection in the breeding of P. sibirica and related species.

SELECTION OF CITATIONS
SEARCH DETAIL