Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
BMC Med ; 22(1): 218, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816877

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a promising therapy for refractory Gilles de la Tourette syndrome (GTS). However, its long-term efficacy, safety, and recommended surgical age remain controversial, requiring evidence to compare different age categories. METHODS: This retrospective cohort study recruited 102 GTS patients who underwent DBS between October 2006 and April 2022 at two national centers. Patients were divided into two age categories: children (aged < 18 years; n = 34) and adults (aged ≥ 18 years; n = 68). The longitudinal outcomes as tic symptoms were assessed by the YGTSS, and the YBOCS, BDI, and GTS-QOL were evaluated for symptoms of obsessive-compulsive disorder (OCD), depression, and quality of life, respectively. RESULTS: Overall, these included patients who finished a median 60-month follow-up, with no significant difference between children and adults (p = 0.44). Overall, the YGTSS total score showed significant postoperative improvements and further improved with time (improved 45.2%, 51.6%, 55.5%, 55.6%, 57.8%, 61.4% after 6, 12, 24, 36, 48, and ≥ 60 months of follow-up compared to baseline, respectively) in all included patients (all p < 0.05). A significantly higher improvement was revealed in children than adults at ≥ 60 months of follow-up in the YGTSS scores (70.1% vs 55.9%, p = 0.043), and the time to achieve 60% improvement was significantly shorter in the children group (median 6 months vs 12 months, p = 0.013). At the last follow-up, the mean improvements were 45.4%, 48.9%, and 55.9% and 40.3%, 45.4%, and 47.9% in YBOCS, BDI, and GTS-QOL scores for children and adults, respectively, which all significantly improved compared to baseline (all p < 0.05) but without significant differences between these two groups (all p > 0.05), and the children group received significantly higher improvement in GTS-QOL scores than adults (55.9% vs. 47.9%, p = 0.049). CONCLUSIONS: DBS showed acceptable long-term efficacy and safety for both children and adults with GTS. Surgeries performed for patients younger than 18 years seemed to show acceptable long-term efficacy and safety and were not associated with increased risks of loss of benefit compared to patients older than 18 at the time of surgery. However, surgeries for children should also be performed cautiously to ensure their refractoriness and safety.


Subject(s)
Deep Brain Stimulation , Tourette Syndrome , Humans , Tourette Syndrome/therapy , Deep Brain Stimulation/methods , Male , Female , Child , Adult , Adolescent , Retrospective Studies , Follow-Up Studies , Young Adult , Treatment Outcome , Quality of Life , Middle Aged , Age Factors
2.
Article in English | MEDLINE | ID: mdl-38687040

ABSTRACT

BACKGROUND AND OBJECTIVES: Surface-based facial scanning registration emerged as an essential registration method in the robot-assisted neuronavigation surgery, providing a marker-free way to align a patient's facial surface with the imaging data. The 3-dimensional (3D) structured light was developed as an advanced registration method based on surface-based facial scanning registration. We aspire to introduce the 3D structured light as a new registration method in the procedure of the robot-assisted neurosurgery and assess the accuracy, efficiency, and safety of this method by analyzing the relative operative results. METHODS: We analyzed the results of 47 patients who underwent Ommaya reservoir implantation (n = 17) and stereotactic biopsy (n = 30) assisted by 3D structured light at our hospital from January 2022 to May 2023. The accuracy and additional operative results were analyzed. RESULTS: For the Ommaya reservoir implantation, the target point error was 3.2 ± 2.2 mm and the entry point error was 3.3 ± 2.4 mm, while the operation duration was 35.8 ± 8.3 minutes. For the stereotactic biopsy, the target point error was 2.3 ± 1.3 mm and the entry point error was 2.7 ± 1.2 mm, while the operation duration was 24.5 ± 6.3 minutes. CONCLUSION: The 3D structured light technique reduces the patients' discomfort and offers the advantage of a simpler procedure, which can improve the clinical efficiency with the sufficient accuracy and safety to meet the clinical requirements of the puncture and navigation.

3.
iScience ; 26(11): 107983, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37867956

ABSTRACT

Neurosurgical robots have developed for decades and can effectively assist surgeons to carry out a variety of surgical operations, such as biopsy, stereo-electroencephalography (SEEG), deep brain stimulation (DBS), and so forth. In recent years, neurosurgical robots in China have developed rapidly. This article will focus on several key skills in neurosurgical robots, such as medical imaging systems, automatic manipulator, lesion localization techniques, multimodal image fusion technology, registration method, and vascular imaging technology; introduce the clinical application of neurosurgical robots in China, and look forward to the potential improvement points in the future based on our experience and research in the field.

4.
J Robot Surg ; 17(5): 2259-2269, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37308790

ABSTRACT

During surgery for foci-related epilepsy, neurosurgeons face significant difficulties in identifying and resecting MRI-negative or deep-seated epileptic foci. Here, we present a neuro-robotic navigation system that is specifically designed for resection of MRI negative epileptic foci. We recruited 52 epileptic patients, and randomly assigned them to treatment group with either neuro-robotic navigation or conventional neuronavigation system. For each patient, in the neuro-robotic navigation group, we integrated multimodality imaging including MRI and PET-CT into the robotic workstation and marked the boundary of foci from the fused image. During surgery, this boundary was delineated by the robotic laser device with high accuracy, guiding resection for the surgeon. For deeply seated foci, we exploited the neuro-robotic navigation system to localize the deepest point with biopsy needle insertion and methylene dye application to locate the boundary of the foci. Our results show that, compared with the conventional neuronavigation, the neuro-robotic navigation system performs equally well in MRI positive epilepsy patients (ENGEL I ratio: 71.4% vs 100%, p = 0.255) systems and show better performance in patients with MRI-negative focal cortical dysplasia (ENGEL I ratio: 88.2% vs 50%, p = 0.0439). At present, there are no documented neurosurgery robots with similar function and application in the field of epilepsy. Our research highlights the added value of using neuro-robotic navigation systems in resection surgery for epilepsy, particularly in cases that involve MRI-negative or deep-seated epileptic foci.


Subject(s)
Epilepsy , Robotic Surgical Procedures , Robotics , Humans , Epilepsy/diagnostic imaging , Epilepsy/surgery , Magnetic Resonance Imaging/methods , Neuronavigation/methods , Positron Emission Tomography Computed Tomography , Robotic Surgical Procedures/methods
5.
Neurobiol Dis ; 182: 106143, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37146835

ABSTRACT

BACKGROUND: Sleep disturbances are highly prevalent in movement disorders, potentially due to the malfunctioning of basal ganglia structures. Pallidal deep brain stimulation (DBS) has been widely used for multiple movement disorders and been reported to improve sleep. We aimed to investigate the oscillatory pattern of pallidum during sleep and explore whether pallidal activities can be utilized to differentiate sleep stages, which could pave the way for sleep-aware adaptive DBS. METHODS: We directly recorded over 500 h of pallidal local field potentials during sleep from 39 subjects with movement disorders (20 dystonia, 8 Huntington's disease, and 11 Parkinson's disease). Pallidal spectrum and cortical-pallidal coherence were computed and compared across sleep stages. Machine learning approaches were utilized to build sleep decoders for different diseases to classify sleep stages through pallidal oscillatory features. Decoding accuracy was further associated with the spatial localization of the pallidum. RESULTS: Pallidal power spectra and cortical-pallidal coherence were significantly modulated by sleep-stage transitions in three movement disorders. Differences in sleep-related activities between diseases were identified in non-rapid eye movement (NREM) and REM sleep. Machine learning models using pallidal oscillatory features can decode sleep-wake states with over 90% accuracy. Decoding accuracies were higher in recording sites within the internus-pallidum than the external-pallidum, and can be precited using structural (P < 0.0001) and functional (P < 0.0001) whole-brain neuroimaging connectomics. CONCLUSION: Our findings revealed strong sleep-stage dependent distinctions in pallidal oscillations in multiple movement disorders. Pallidal oscillatory features were sufficient for sleep stage decoding. These data may facilitate the development of adaptive DBS systems targeting sleep problems that have broad translational prospects.


Subject(s)
Deep Brain Stimulation , Dystonia , Dystonic Disorders , Parkinson Disease , Humans , Globus Pallidus , Parkinson Disease/complications , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Sleep
6.
J Clin Med ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902568

ABSTRACT

BACKGROUND: Electrode reconstruction for postoperative deep brain simulation (DBS) can be achieved manually using a surgical planning system such as Surgiplan, or in a semi-automated manner using software such as the Lead-DBS toolbox. However, the accuracy of Lead-DBS has not been thoroughly addressed. METHODS: In our study, we compared the DBS reconstruction results of Lead-DBS and Surgiplan. We included 26 patients (21 with Parkinson's disease and 5 with dystonia) who underwent subthalamic nucleus (STN)-DBS, and reconstructed the DBS electrodes using the Lead-DBS toolbox and Surgiplan. The electrode contact coordinates were compared between Lead-DBS and Surgiplan with postoperative CT and MRI. The relative positions of the electrode and STN were also compared between the methods. Finally, the optimal contact during follow-up was mapped onto the Lead-DBS reconstruction results to check for overlap between the contacts and the STN. RESULTS: We found significant differences in all axes between Lead-DBS and Surgiplan with postoperative CT, with the mean variance for the X, Y, and Z coordinates being -0.13, -1.16, and 0.59 mm, respectively. Y and Z coordinates showed significant differences between Lead-DBS and Surgiplan with either postoperative CT or MRI. However, no significant difference in the relative distance of the electrode and the STN was found between the methods. All optimal contacts were located in the STN, with 70% of them located within the dorsolateral region of the STN in the Lead-DBS results. CONCLUSIONS: Although significant differences in electrode coordinates existed between Lead-DBS and Surgiplan, our results suggest that the coordinate difference was around 1 mm, and Lead-DBS can capture the relative distance between the electrode and the DBS target, suggesting it is reasonably accurate for postoperative DBS reconstruction.

8.
Front Neurorobot ; 16: 996685, 2022.
Article in English | MEDLINE | ID: mdl-36531913

ABSTRACT

Introduction: This work aims to assess the accuracy of robotic assistance guided by a videometric tracker in deep brain stimulation (DBS). Methods: We retrospectively reviewed a total of 30 DBS electrode implantations, assisted by the Remebot robotic system, with a novel frameless videometric registration workflow. Then we selected 30 PD patients who used stereotactic frame surgery to implant electrodes during the same period. For each electrode, accuracy was assessed using radial and axial error. Results: The average radial error of the robot-assisted electrode implantation was 1.28 ± 0.36 mm, and the average axial error was 1.20 ± 0.40 mm. No deaths or associated hemorrhages, infections or poor incision healing occurred. Conclusion: Robot-assisted implantation guided by a videometric tracker is accurate and safe.

9.
Front Neurosci ; 16: 988661, 2022.
Article in English | MEDLINE | ID: mdl-36408391

ABSTRACT

Background: The accuracy of the deep brain stimulation (DBS) electrode placement is influenced by a myriad of factors, among which pneumocephalus and loss of cerebrospinal fluid that occurs with dural opening during the surgery are considered most important. This study aimed to describe an effective method for decreasing pneumocephalus by comparing its clinical efficacy between the two different methods of opening the dura. Materials and methods: We retrospectively compared two different methods of opening the dura in 108 patients who underwent bilateral DBS surgery in our center. The dural incision group comprised 125 hemispheres (58 bilateral and 9 unilateral) and the dural puncture group comprised 91 (41 bilateral and 9 unilateral). The volume of intracranial air, dural opening time, intraoperative microelectrode recordings (MERs), postoperative electrode displacement, clinical efficacy, and complications were examined. Spearman correlation analysis was employed to identify factors associated with the volume of intracranial air and postoperative electrode displacement. Results: The volume of intracranial air was significantly lower (0.35 cm3 vs. 5.90 cm3) and dural opening time was significantly shorter (11s vs. 35s) in the dural puncture group. The volume of intracranial air positively correlated with dural opening time. During surgery, the sensorimotor area was longer (2.47 ± 1.36 mm vs. 1.92 ± 1.42 mm) and MERs were more stable (81.82% vs. 47.73%) in the dural puncture group. Length of the sensorimotor area correlated negatively with the volume of intracranial air. As intracranial air was absorbed after surgery, significant anterior, lateral, and ventral electrode displacement occurred; the differences between the two groups were significant (total electrode displacement, 1.0mm vs. 1.4mm). Electrode displacement correlated positively with the volume of intracranial air. Clinical efficacy was better in the dural puncture group than the dural incision group (52.37% ± 16.18% vs. 43.93% ± 24.50%), although the difference was not significant. Conclusion: Our data support the hypothesis that opening the dura via puncture rather than incision when performing DBS surgery reduces pneumocephalus, shortens dural opening time, enables longer sensorimotor area and more stable MERs, minimizes postoperative electrode displacement, and may permit a better clinical efficacy.

11.
Oper Neurosurg (Hagerstown) ; 23(4): 334-341, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36001745

ABSTRACT

BACKGROUND: MRI-guided laser interstitial thermal therapy (MRgLITT) is a novel treatment modality for focal cortical dysplasia (FCD). However, identifying the location and extent of subtle FCD by visual analysis during MRgLITT remains challenging. OBJECTIVE: To introduce voxel-based morphometric MRI postprocessing into the procedure of MRgLITT for FCD-suspected lesions and assess the complementary value of the MRI postprocessing technique for the trajectory design and thermal parameter setting of MRgLITT. METHODS: Junction and normalized fluid-attenuated inversion recovery signal intensity images were used to detect the gray-white matter junction blurring and cortical fluid-attenuated inversion recovery hyperintensity, respectively. According to the 2 postprocessing images, the region of interest (ROI) for ablation was drawn. The main principle of presurgical planning is that the trajectory of the laser fiber was designed as far as possible along the long axis of the ROI while the extent of planned ablation covered the entire ROI. The subsequent intraoperative procedure was performed under the guidance of the presurgical plan. RESULTS: Nine patients with epilepsy with FCD-suspected lesions underwent MRgLITT with the assistance of MRI postprocessing images. Among them, 4 patients were junction positive, 2 patients were normalized fluid-attenuated inversion recovery signal intensity positive, and the remaining 3 patients were positive for both. Postsurgical MRI demonstrated that the ROIs were ablated entirely in 7 patients. Engel Ia, Ib, and IV scores were obtained at 1-year follow-up for 6, 1, and 2 patients, respectively. CONCLUSION: MRI postprocessing provides complementary information for designing the laser fiber trajectory and subsequent ablation for FCDs.


Subject(s)
Epilepsy , Laser Therapy , Malformations of Cortical Development , Epilepsy/surgery , Humans , Lasers , Magnetic Resonance Imaging/methods , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/surgery
12.
World Neurosurg ; 164: e245-e255, 2022 08.
Article in English | MEDLINE | ID: mdl-35489598

ABSTRACT

OBJECTIVE: We investigated the differences in motor symptom change outcomes after bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) in well-defined motor subtypes of Parkinson's disease (PD) to improve clinical decision making. METHODS: We included 114 patients who had undergone STN-DBS and 65 patients who had undergone GPi-DBS. The patients were classified as having akinetic-rigid type (ART), tremor-dominant type (TDT), and mixed type (MT) using the preoperative Movement Disorder Society Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III) scores in the no-medication state. The outcome measures included the no-medication MDS-UPDRS-III scores and subscore changes at the last follow-up after surgery. The outcomes were compared among the different motor subtypes and between STN-DBS and GPi-DBS. RESULTS: At the last follow-up (14.92 ± 8.35 months), the TDT patients had had a greater median overall motor improvement in the no-medication MDS-UPDRS-III scores compared with the ART patients (62.90% vs. 46.67%; P < 0.001), regardless of the stimulation target. The ART patients showed greater improvement after STN-DBS than after GPi-DBS (54.44% vs. 37.21%; P < 0.001), with improvements in rigidity, akinesia, and posture and gait disorders accounting for the difference. CONCLUSIONS: Our results suggest that the different PD motor subtypes will have differential responses to STN-DBS and GPi-DBS, that TDT patients will experience greater improvement than ART patients, and that STN-DBS provides better effects for ART patients than does GPi-DBS. In addition, different motor symptoms among the different motor subtypes might respond differently to STN-DBS than to GPi-DBS. All these factors could reflect the heterogeneity of PD. Longer-term outcomes across the different motor subtypes and stimulation targets should be studied further.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Deep Brain Stimulation/methods , Globus Pallidus/surgery , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Treatment Outcome
13.
Brain ; 145(7): 2407-2421, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35441231

ABSTRACT

Freezing of gait is a debilitating symptom in advanced Parkinson's disease and responds heterogeneously to treatments such as deep brain stimulation. Recent studies indicated that cortical dysfunction is involved in the development of freezing, while evidence depicting the specific role of the primary motor cortex in the multi-circuit pathology of freezing is lacking. Since abnormal beta-gamma phase-amplitude coupling recorded from the primary motor cortex in patients with Parkinson's disease indicates parkinsonian state and responses to therapeutic deep brain stimulation, we hypothesized this metric might reveal unique information on understanding and improving therapy for freezing of gait. Here, we directly recorded potentials in the primary motor cortex using subdural electrocorticography and synchronously captured gait freezing using optoelectronic motion-tracking systems in 16 freely-walking patients with Parkinson's disease who received subthalamic nucleus deep brain stimulation surgery. Overall, we recorded 451 timed up-and-go walking trials and quantified 7073 s of stable walking and 3384 s of gait freezing in conditions of on/off-stimulation and with/without dual-tasking. We found that (i) high beta-gamma phase-amplitude coupling in the primary motor cortex was detected in freezing trials (i.e. walking trials that contained freezing), but not non-freezing trials, and the high coupling in freezing trials was not caused by dual-tasking or the lack of movement; (ii) non-freezing episodes within freezing trials also demonstrated abnormally high couplings, which predicted freezing severity; (iii) deep brain stimulation of subthalamic nucleus reduced these abnormal couplings and simultaneously improved freezing; and (iv) in trials that were at similar coupling levels, stimulation trials still demonstrated lower freezing severity than no-stimulation trials. These findings suggest that elevated phase-amplitude coupling in the primary motor cortex indicates higher probabilities of freezing. Therapeutic deep brain stimulation alleviates freezing by both decoupling cortical oscillations and enhancing cortical resistance to abnormal coupling. We formalized these findings to a novel 'bandwidth model,' which specifies the role of cortical dysfunction, cognitive burden and therapeutic stimulation on the emergence of freezing. By targeting key elements in the model, we may develop next-generation deep brain stimulation approaches for freezing of gait.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Subthalamic Nucleus , Deep Brain Stimulation/adverse effects , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Walking/physiology
14.
Front Neurosci ; 16: 795417, 2022.
Article in English | MEDLINE | ID: mdl-35310098

ABSTRACT

Background: This study aimed to describe a synchronized intracranial electroencephalogram (EEG) recording and motion capture system, which was designed to explore the neural dynamics during walking of Parkinson's disease (PD) patients with freezing of gait (FOG). Preliminary analysis was performed to test the reliability of this system. Methods: A total of 8 patients were enrolled in the study. All patients underwent bilateral STN-DBS surgery and were implanted with a right subdural electrode covering premotor and motor area. Synchronized electrophysiological and gait data were collected using the Nihon Kohden EEG amplifier and Codamotion system when subjects performed the Timed Up and Go (TUG) test. To verify the reliability of the acquisition system and data quality, we calculated and compared the FOG index between freezing and non-freezing periods during walking. For electrophysiological data, we first manually reviewed the scaled (five levels) quality during waking. Spectra comprising broadband electrocorticography (ECoG) and local field potential (LFP) were also compared between the FOG and non-FOG states. Lastly, connectivity analysis using coherence between cortical and STN electrodes were conducted. In addition, we also use machine learning approaches to classified FOG and non-FOG. Results: A total of 8 patients completed 41 walking tests, 30 of which had frozen episodes, and 21 of the 30 raw data were level 1 or 2 in quality (70%). The mean ± SD walking time for the TUG test was 85.94 ± 47.68 s (range: 38 to 190.14 s); the mean ± SD freezing duration was 12.25 ± 7.35 s (range: 1.71 to 27.50 s). The FOG index significantly increased during the manually labeled FOG period (P < 0.05). The beta power of STN LFP in the FOG period was significantly higher than that in the non-FOG period (P < 0.05), while the band power of ECoG did not exhibit a significant difference between walking states. The coherence between the ECoG and STN LFP was significantly greater in high beta and gamma bands during the FOG period compared with the shuffled surrogates (P < 0.05). Lastly, STN-LFP band power features showed above-chance performance (p < 0.01, permutation test) in identifying FOG epochs. Conclusion: In this study, we established and verified the synchronized ECoG/LFP and gait recording system in PD patients with FOG. Further neural substrates underlying FOG could be explored using the current system.

15.
CNS Neurosci Ther ; 28(3): 448-457, 2022 03.
Article in English | MEDLINE | ID: mdl-34964261

ABSTRACT

AIMS: Entorhinal cortex (EC) deep brain stimulation (DBS) has shown a memory enhancement effect. However, its brain network modulation mechanisms remain unclear. The present study aimed to investigate the functional connectivity in the rat hippocampal-cortex network and episodic-like memory performance following EC-DBS. METHODS: 7.0 T functional MRI (fMRI) scans and episodic-like memory tests were performed 3 days and 28 days after EC-DBS in healthy rats. The fMRI data processing was focused on the power spectra, functional connectivity, and causality relationships in the hippocampal-cortex network. In addition, the exploration ratio for each object and the discrimination ratio of the "when" and "where" factors were calculated in the behavioral tests. RESULTS: EC-DBS increased the power spectra and the functional connectivity in the prefrontal- and hippocampal-related networks 3 days after stimulation and recovered 4 weeks later. Both networks exhibited a strengthened connection with the EC after EC-DBS. Further seed-based functional connectivity comparisons showed increased connectivity among the prefrontal cortex, hippocampus and EC, especially on the ipsilateral side of DBS. The dentate gyrus is a hub region closely related to both the EC and the prefrontal cortex and receives information flow from both. Moreover, acute EC-DBS also enhanced the discrimination ratio of the "where" factor in the episodic-like memory test on Day 3. CONCLUSION: EC-DBS caused a reversible modulation effect on functional connectivity in the hippocampal-cortex network and episodic-like memory performance.


Subject(s)
Deep Brain Stimulation , Memory, Episodic , Animals , Brain , Entorhinal Cortex/diagnostic imaging , Entorhinal Cortex/physiology , Hippocampus/physiology , Magnetic Resonance Imaging , Rats
17.
Front Neurol ; 12: 683532, 2021.
Article in English | MEDLINE | ID: mdl-34630273

ABSTRACT

Background: The successful application of subthalamic nucleus (STN) deep brain stimulation (DBS) surgery relies mostly on optimal lead placement, whereas the major challenge is how to precisely localize STN. Microstimulation, which can induce differentiating inhibitory responses between STN and substantia nigra pars reticulata (SNr) near the ventral border of STN, has indicated a great potential of breaking through this barrier. Objective: This study aims to investigate the feasibility of localizing the boundary between STN and SNr (SSB) using microstimulation and promote better lead placement. Methods: We recorded neurophysiological data from 41 patients undergoing STN-DBS surgery with microstimulation in our hospital. Trajectories with typical STN signal were included. Microstimulation was applied near the bottom of STN to determine SSB, which was validated by the imaging reconstruction of DBS leads. Results: In most trajectories with microstimulation (84.4%), neuronal firing in STN could not be inhibited by microstimulation, whereas in SNr long inhibition was observed following microstimulation. The success rate of localizing SSB was significantly higher in trajectories with microstimulation than those without. Moreover, results from imaging reconstruction and intraoperative neurological assessments demonstrated better lead location and higher therapeutic effectiveness in trajectories with microstimulation and accurately identified SSB. Conclusion: Microstimulation on microelectrode recording is an effective approach to localize the SSB. Our data provide clinical evidence that microstimulation can be routinely employed to achieve better lead placement.

18.
Sci Rep ; 11(1): 20724, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671073

ABSTRACT

Neuroscientific studies on the function of the basal ganglia often examine the behavioral performance of patients with movement disorders, such as Parkinson's disease (PD) and dystonia (DT), while simultaneously examining the underlying electrophysiological activity during deep brain stimulation surgery. Nevertheless, to date, there have been no studies comparing the cognitive performance of PD and DT patients during surgery. In this study, we assessed the memory function of PD and DT patients with the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE). We also tested their cognitive performance during the surgery using a continuous recognition memory test. The results of the MoCA and MMSE failed to reveal significant differences between the PD and DT patients. Additionally, no significant difference was detected by the intraoperative memory test between the PD and DT patients. The intraoperative memory test scores were highly correlated with the MMSE scores and MoCA scores. Our data suggest that DT patients perform similarly to PD patients in cognitive tests during surgery, and intraoperative memory tests can be used as a quick memory assessment tool during surgery.


Subject(s)
Cognition/physiology , Dystonia/physiopathology , Memory/physiology , Parkinson Disease/physiopathology , Female , Humans , Male , Mental Status and Dementia Tests , Middle Aged , Neuropsychological Tests
19.
Front Neurosci ; 15: 685142, 2021.
Article in English | MEDLINE | ID: mdl-34421517

ABSTRACT

BACKGROUND: This work aims to assess the effectiveness and safety of robotic assistance in ventriculoperitoneal shunting and to compare the results with data from traditional surgery. METHODS: We retrospectively analyzed 60 patients who had undergone ventriculoperitoneal shunting, of which shunts were implanted using a robot in 20 patients and using traditional surgical methods in the other 40 patients. Data related to surgery were compared between the two groups, and the accuracy of the drainage tube in the robot-assisted group was assessed. RESULTS: In the robot-assisted surgery group, the operation duration was 29.75 ± 6.38 min, intraoperative blood loss was 10.0 ± 3.98 ml, the success rate of a single puncture was 100%, and the bone hole diameter was 4.0 ± 0.3 mm. On the other hand, the operation duration was 48.63 ± 6.60 min, intraoperative blood loss was 22.25 ± 4.52 ml, the success rate of a single puncture was 77.5%, and the bone hole diameter was 11.0 ± 0.2 mm in the traditional surgery group. The above are statistically different between the two groups (P < 0.05). Only one case of surgery-related complications occurred in the robot-assisted group, while 13 cases occurred in the traditional surgery group. There was no significant difference in the hospitalization time. In the robot-assisted surgery group, the average radial error was 2.4 ± 1.5 mm and the average axial error was 1.9 ± 2.1 mm. CONCLUSION: In summary, robot-assisted implantation is accurate, simple to operate, and practical; the duration of surgery is short; trauma to the patient is reduced; and fewer postoperative complications related to surgery are reported.

20.
Front Neurol ; 12: 682733, 2021.
Article in English | MEDLINE | ID: mdl-34421791

ABSTRACT

Background: Biopsies play an important role in the diagnosis of intracranial lesions, and robot-assisted procedures are increasingly common in neurosurgery centers. This research investigates the diagnoses, complications, and technology yield of 700 robotic frameless intracranial stereotactic biopsies conducted with the Remebot system. Method: This research considered 700 robotic biopsies performed between 2016 and 2020 by surgeons from the Department of Functional Neurosurgery in Beijing's Tiantan Hospital. The data collected included histological diagnoses, postoperative complications, operation times, and the accuracy of robotic manipulation. Results: Among the 700 surgeries, the positive rate of the biopsies was 98.2%. The most common histological diagnoses were gliomas, which accounted for 62.7% of cases (439/700), followed by lymphoma and germinoma, which accounted for 18.7% (131/700) and 7.6% (53/700). Bleeding was found in 14 patients (2%) by post-operation computed tomography scans. A total of 29 (4.14%) patients had clinical impairments after the operation, and 9 (1.29%) experienced epilepsy during the operation. The post-biopsy mortality rate was 0.43%. Operation time-from marking the cranial point to suturing the skin-was 16.78 ± 3.31 min (range 12-26 min). The target error was 1.13 ± 0.30 mm, and the entry point error was 0.99 ± 0.24 mm. Conclusion: A robot-assisted frameless intracranial stereotactic biopsy guided by a videometric tracker is an efficient, safe, and accurate method for biopsies.

SELECTION OF CITATIONS
SEARCH DETAIL
...