Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
ACS Synth Biol ; 13(6): 1809-1819, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38819403

ABSTRACT

Cas12a is a widely used programmable nuclease for genome editing across a variety of organisms, but its application is limited by its PAM recognition restriction. To alleviate these PAM constraints, protein engineering efforts have been applied to expand the PAM recognition range. In this study, we designed and constructed 990 synthetic hybrid Cas12a chimeras through domain shuffling and screened an efficient hybrid Cas12a (ehCas12a) that could recognize a broad range PAM of 5'-TYYN-3' (Y is T or C and N is A, T, C, or G). Furthermore, we constructed an ehCas12a variant, ehCas12a RRVR (T167R/N572R/K578V/N582R), with expanded PAM preference to 5'-TNYN, TWRV-3' (W is A or T, R is A or G, and V is A, C, or G), which can efficiently recognize -2* A/G PAMs that are barely recognized by Cas12a-type proteins and their mutants. Finally, we demonstrated that the DNase-inactivated ehCas12a RRVR base editor (dehCas12a RRVR-BE) was capable of targeting noncanonical PAMs in vivo and disease-related loci for potential therapeutic applications. Overall, our findings highlight the modular design and reconfiguration of Cas proteins for enhanced functionality.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Engineering/methods , Humans , Escherichia coli/genetics
2.
ISA Trans ; 151: 312-323, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782638

ABSTRACT

Parallel-connected digital valve arrays are commonly utilized in the pilot stage of the proportional directional valve to enhance dynamic performance and reliability. However, when the digital valve array is driven by a digital signal, it is difficult to optimally assign the signal pulses to each valve. If the assignment is not well executed, it can significantly reduce the switching uniformity of the digital valves or lead to performance degradation of the system. In this paper, a model-based sliding mode control strategy based on the intelligent distribution of control law is proposed and successfully applied to a proportional valve driven by digital valve arrays. The intelligent distribution strategy encompasses a logic distribution algorithm and a circular sliding distribution algorithm that automatically assigns control laws to different valves based on the rolling of the PWM signal cycle. Experimental results confirm that the proposed strategy not only simultaneously reduces the total number of valve switches and enhances the switching uniformity among the valves, but also adapts to the variation in the number of valves. The proposed strategy is not limited to the application of digital valve arrays, it is also applicable in other fields of multi-actuators driven by digital signals, and can simultaneously improve the control accuracy, lifetime, and maintenance friendliness.

3.
Metab Brain Dis ; 39(1): 183-197, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847347

ABSTRACT

BACKGROUND: Guipi decoction (GPD) not only improves gastrointestinal (GI) function, but also depressive mood. The bioinformatics study aimed to reveal potential crosstalk genes and related pathways between depression and GI disorders. A network pharmacology approach was used to explore the molecular mechanisms and potential targets of GPD for the simultaneous treatment of depression comorbid GI disorders. METHODS: Differentially expressed genes (DEGs) of major depressive disorder (MDD) were identified based on GSE98793 and GSE19738, and GI disorders-related genes were screened from the GeneCards database. Overlapping genes between MDD and GI disorders were obtained to identify potential crosstalk genes. Protein-protein interaction (PPI) network was constructed to screen for hub genes, signature genes were identified by LASSO regression analysis, and single sample gene set enrichment analysis (ssGSEA) was performed to analyze immune cell infiltration. In addition, based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, we screened the active ingredients and targets of GPD and identified the intersection targets of GPD with MDD and GI disorder-related genes, respectively. A "component-target" network was constructed using Cytoscape, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. RESULTS: The MDD-corrected dataset contained 2619 DEGs, and a total of 109 crosstalk genes were obtained. 14 hub genes were screened, namely SOX2, CRP, ACE, LEP, SHH, CDH2, CD34, TNF, EGF, BDNF, FN1, IL10, PPARG, and KIT. These genes were identified by LASSO regression analysis for 3 signature genes, including TNF, EGF, and IL10. Gamma.delta.T.cell was significantly positively correlated with all three signature genes, while Central.memory.CD4.T.cell and Central.memory.CD8.T.cell were significantly negatively correlated with EGF and TNF. GPD contained 134 active ingredients and 248 targets, with 41 and 87 relevant targets for the treatment of depression and GI disorders, respectively. EGF, PPARG, IL10 and CRP overlap with the hub genes of the disease. CONCLUSION: We found that GPD may regulate inflammatory and oxidative stress responses through EGF, PPARG, IL10 and CRP targets, and then be involved in the treatment of both depression and GI disorders.


Subject(s)
Depressive Disorder, Major , Drugs, Chinese Herbal , Gastrointestinal Diseases , Humans , Network Pharmacology , Depression/drug therapy , Depression/genetics , Epidermal Growth Factor , Interleukin-10 , PPAR gamma , Comorbidity , Computational Biology
4.
Sci Rep ; 13(1): 16074, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752199

ABSTRACT

Using advanced bioinformatics techniques, we conducted an analysis of ferroptosis-related genes (FRGs) in precancerous lesions of gastric cancer (PLGC). We also investigated their connection to immune cell infiltration and diagnostic value, ultimately identifying new molecular targets that could be used for PLGC patient treatment. The Gene Expression Omnibus (GEO) and FerrDb V2 databases were used to identify FRGs. These genes were analysed via ClueGO pathways and Gene Ontology (GO) enrichment analysis, as well as single-cell dataset GSE134520 analysis. A machine learning model was applied to identify hub genes associated with ferroptosis in PLGC patients. Receiver Operating Characteristics (ROC) curve analysis was conducted to verify the diagnostic efficacy of these genes, and a PLGC diagnosis model nomogram was established based on hub genes. R software was utilized to conduct functional, pathway, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) on the identified diagnostic genes. Hub gene expression levels and survival times in gastric cancer were analysed using online databases to determine the prognostic value of these genes. MCPcounter and single-sample gene set enrichment analysis (ssGSEA) algorithms were used to investigate the correlation between hub genes and immune cells. Finally, noncoding RNA regulatory mechanisms and transcription factor regulatory networks for hub genes were mapped using multiple databases. Eventually, we identified 23 ferroptosis-related genes in PLGC. Enrichment analyses showed that ferroptosis-related genes were closely associated with iron uptake and transport and ferroptosis in the development of PLGC. After differential analysis using machine learning algorithms, we identified four hub genes in PLGC patients, including MYB, CYB5R1, LIFR and DPP4. Consequently, we established a ferroptosis diagnosis model nomogram. GSVA and GSEA mutual verification analysis helped uncover potential regulatory mechanisms of hub genes. MCPcounter and ssGSEA analysed immune infiltration in the disease and indicated that B cells and parainflammation played an important role in disease progression. Finally, we constructed noncoding RNA regulatory networks and transcription factor regulatory networks. Our study identified ferroptosis-related diagnostic genes and therapeutic targets for PLGC, providing novel insights and a theoretical foundation for research into the molecular mechanisms, clinical diagnosis, and treatment of this disease.


Subject(s)
Ferroptosis , Precancerous Conditions , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Ferroptosis/genetics , Precancerous Conditions/genetics , Biomarkers
5.
J Fungi (Basel) ; 9(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37755015

ABSTRACT

Natural sugar substitutes are safe, stable, and nearly calorie-free. Thus, they are gradually replacing the traditional high-calorie and artificial sweeteners in the food industry. Currently, the majority of natural sugar substitutes are extracted from plants, which often requires high levels of energy and causes environmental pollution. Recently, biosynthesis via engineered microbial cell factories has emerged as a green alternative for producing natural sugar substitutes. In this review, recent advances in the biosynthesis of natural sugar substitutes in yeasts are summarized. The metabolic engineering approaches reported for the biosynthesis of oligosaccharides, sugar alcohols, glycosides, and rare monosaccharides in various yeast strains are described. Meanwhile, some unresolved challenges in the bioproduction of natural sugar substitutes in yeast are discussed to offer guidance for future engineering.

6.
Commun Chem ; 6(1): 152, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454208

ABSTRACT

3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) is a key enzyme in the shikimate pathway for the biosynthesis of aromatic compounds. L-Phe and L-Tyr bind to the two main DAHPS isoforms and inhibit their enzyme activities, respectively. Synthetic biologists aim to relieve such inhibitions in order to improve the productivity of aromatic compounds. In this work, we reported a point mutant of yeast DHAPS, Aro3D154N, which retains the wild type enzyme activity but converts it highly inert to the inhibition by L-Phe. The Aro3 crystal structure along with the molecular dynamics simulations analysis suggests that the D154N mutation distant from the inhibitor binding cavity may reduce the binding affinity of L-Phe. Growth assays demonstrated that substitution of the conserved D154 with asparagine suffices to relieve the inhibition of L-Phe on Aro3, L-Tyr on Aro4, and the inhibitions on their corresponding homologues from diverse yeasts. The importance of our discovery is highlighted by the observation of 29.1% and 43.6% increase of yield for the production of tyrosol and salidroside respectively upon substituting ARO3 with ARO3D154N. We anticipate that this allele would be used broadly to increase the yield of various aromatic products in metabolically diverse microorganisms.

7.
Yeast ; 40(5-6): 214-230, 2023 May.
Article in English | MEDLINE | ID: mdl-37078622

ABSTRACT

L -Tyrosine derivatives are widely applied in the pharmaceutical, food, and chemical industries. Their production is mainly confined to chemical synthesis and plant extract. Microorganisms, as cell factories, exhibit promising advantages for valuable chemical production to fulfill the increase in the demand of global markets. Yeast has been used to produce natural products owing to its robustness and genetic maneuverability. Focusing on the progress of yeast cell factories for the production of L -tyrosine derivatives, we summarized the emerging metabolic engineering approaches in building L -tyrosoine-overproducing yeast and constructing cell factories of three typical chemicals and their derivatives: tyrosol, p-coumaric acid, and L -DOPA. Finally, the challenges and opportunities of L -tyrosine derivatives production in yeast cell factories were also discussed.


Subject(s)
Saccharomyces cerevisiae , Tyrosine , Tyrosine/genetics , Tyrosine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering , Levodopa/genetics , Levodopa/metabolism
8.
Nat Commun ; 14(1): 1727, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977719

ABSTRACT

By lacking de novo purine biosynthesis enzymes, Plasmodium falciparum requires purine nucleoside uptake from host cells. The indispensable nucleoside transporter ENT1 of P. falciparum facilitates nucleoside uptake in the asexual blood stage. Specific inhibitors of PfENT1 prevent the proliferation of P. falciparum at submicromolar concentrations. However, the substrate recognition and inhibitory mechanism of PfENT1 are still elusive. Here, we report cryo-EM structures of PfENT1 in apo, inosine-bound, and inhibitor-bound states. Together with in vitro binding and uptake assays, we identify that inosine is the primary substrate of PfENT1 and that the inosine-binding site is located in the central cavity of PfENT1. The endofacial inhibitor GSK4 occupies the orthosteric site of PfENT1 and explores the allosteric site to block the conformational change of PfENT1. Furthermore, we propose a general "rocker switch" alternating access cycle for ENT transporters. Understanding the substrate recognition and inhibitory mechanisms of PfENT1 will greatly facilitate future efforts in the rational design of antimalarial drugs.


Subject(s)
Malaria, Falciparum , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins , Humans , Plasmodium falciparum/metabolism , Nucleoside Transport Proteins/genetics , Nucleoside Transport Proteins/metabolism , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/metabolism , Malaria, Falciparum/drug therapy , Purine Nucleosides/metabolism , Inosine/metabolism
9.
ACS Synth Biol ; 11(11): 3706-3713, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36345886

ABSTRACT

Hydroxytyrosol (HT) is a valuable aromatic compound with numerous applications. Herein, we enabled the efficient and scalable de novo HT production in engineered Saccharomyces cerevisiae (S. cerevisiae) from glucose. Starting from a tyrosol-overproducing strain, six HpaB/HpaC combinations were investigated, and the best catalytic performance was acquired with HpaB from Pseudomonas aeruginosa (PaHpaB) and HpaC from Escherichia coli (EcHpaC), resulting in 425.7 mg/L HT in shake flasks. Next, weakening the tryptophan biosynthetic pathway through downregulating the expression of TRP2 (encoding anthranilate synthase) further improved the HT titer by 27.2% compared to the base strain. Moreover, the cytosolic NADH supply was improved through introducing the feedback-resistant mutant of the TyrA (the NAD+-dependent chorismate mutase/prephenate dehydrogenase, TyrA*) from E. coli, which further increased the HT titer by 36.9% compared to the base strain. The best performing strain was obtained by optimizing the biosynthesis of HT in S. cerevisiae through a screening for an effective HpaB/HpaC combination, biosynthetic flux rewiring, and cofactor engineering, which enabled the titer of HT reaching 1120.0 mg/L in the shake flask. Finally, the engineered strain produced 6.97 g/L of HT by fed-batch fermentation, which represents the highest titer for de novo HT biosynthesis in microorganisms reported to date.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation
10.
J Zhejiang Univ Sci B ; 23(5): 353-364, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35557037

ABSTRACT

Vascular endothelial growth factor (VEGF) is the main regulator of physiological angiogenesis during embryonic development, bone growth, and reproductive function, and it also participates in a series of pathological changes. Traditional Chinese medicine (TCM), with a history of more than 2000 years, has been widely used in clinical practice, while the exploration of its mechanisms has only begun. This review summarizes the research of recent years on the influence of TCM on VEGF. It is found that many Chinese medicines and recipes have a regulatory effect on VEGF, indicating that Chinese medicine has broad prospects as a complementary and alternative therapy, providing new treatment ideas for clinical applications and the theoretical basis for research on the mechanisms of TCM.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Vascular Endothelial Growth Factor A
11.
J Zhejiang Univ Sci B ; 23(1): 1-18, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35029085

ABSTRACT

With the recent upsurge of studies in the field of microbiology, we have learned more about the complexity of the gastrointestinal microecosystem. More than 30 genera and 1000 species of gastrointestinal microflora have been found. The structure of the normal microflora is relatively stable, and is in an interdependent and restricted dynamic equilibrium with the body. In recent years, studies have shown that there is a potential relationship between gastrointestinal microflora imbalance and gastric cancer (GC) and precancerous lesions. So, restoring the balance of gastrointestinal microflora is of great significance. Moreover, intervention in gastric premalignant condition (GPC), also known as precancerous lesion of gastric cancer (PLGC), has been the focus of current clinical studies. The holistic view of traditional Chinese medicine (TCM) is consistent with the microecology concept, and oral TCM can play a two-way regulatory role directly with the microflora in the digestive tract, restoring the homeostasis of gastrointestinal microflora to prevent canceration. However, large gaps in knowledge remain to be addressed. This review aims to provide new ideas and a reference for clinical practice.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Precancerous Conditions , Stomach Neoplasms , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional , Precancerous Conditions/pathology , Stomach Neoplasms/pathology
12.
Neurochem Int ; 151: 105196, 2021 12.
Article in English | MEDLINE | ID: mdl-34601013

ABSTRACT

Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by the pathological hallmarks of ß-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Hyperoside, a flavone glycoside isolated from Rhododendron brachycarpum G. Don (Ericaceae), has neuroprotective effects against Aß both in vitro and in vivo. However, whether hyperoside could delay AD pathogenesis remains unclear. In the present study, we observed if chronic treatment with hyperoside can reverse pathological progressions of AD in the APP/PS1 transgenic mouse model. Meanwhile, we attempted to elucidate the molecular mechanisms involved in regulating its effects. After 9 months of treatment, we found that hyperoside can improve spatial learning and memory in APP/PS1 transgenic mice, reduce amyloid plaque deposition and tau phosphorylation, decrease the number of activated microglia and astrocytes, and attenuate neuroinflammation and oxidative stress in the brain of APP/PS1 mice. These beneficial effects may be mediated in part by influencing reduction of BACE1 and GSK3ß levels. Hyperoside confers neuroprotection against the pathology of AD in APP/PS1 mouse model and is emerging as a promising therapeutic candidate drug for AD.


Subject(s)
Alzheimer Disease/drug therapy , Cognitive Dysfunction/drug therapy , Quercetin/analogs & derivatives , Time , Amyloid Precursor Protein Secretases/drug effects , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/pharmacology , Disease Models, Animal , Mice, Transgenic , Neuroprotective Agents/pharmacology , Plaque, Amyloid/drug therapy , Quercetin/administration & dosage , Quercetin/pharmacology
13.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4089-4095, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34467718

ABSTRACT

Gastric cancer(GC), one of the most common malignancies worldwide, seriously threatens human health due to its high morbidity and mortality. Precancerous lesion of gastric cancer(PLGC) is a critical stage for preventing the occurrence of gastric cancer, and PLGC therapy has frequently been investigated in clinical research. Exploring the proper animal modeling methods is necessary since animal experiment acts as the main avenue of the research on GC treatment. At present, N-methyl-N'-nitro-N-nitroso-guanidine(MNNG) serves as a common chemical inducer for the rat model of GC and PLGC. In this study, MNNG-based methods for modeling PLGC rats in related papers were summarized, and the applications and effects of these methods were demonstrated by examples. Additionally, the advantages, disadvantages, and precautions of various modeling methods were briefly reviewed, and the experience of this research group in exploring modeling methods was shared. This study is expected to provide a reference for the establishment of MNNG-induced PLGC animal model, and a model support for the following studies on PLGC.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Animals , Gastric Mucosa , Methylnitronitrosoguanidine/toxicity , Precancerous Conditions/chemically induced , Rats , Stomach Neoplasms/chemically induced , Stomach Neoplasms/drug therapy
14.
Front Microbiol ; 12: 679665, 2021.
Article in English | MEDLINE | ID: mdl-34220765

ABSTRACT

pRS episomal plasmids are widely used in Saccharomyces cerevisiae, owing to their easy genetic manipulations and high plasmid copy numbers (PCNs). Nevertheless, their broader application is hampered by the instability of the pRS plasmids. In this study, we designed an episomal plasmid based on the endogenous 2µ plasmid with both improved stability and increased PCN, naming it p2µM, a 2µ-modified plasmid. In the p2µM plasmid, an insertion site between the REP1 promoter and RAF1 promoter was identified, where the replication (ori) of Escherichia coli and a selection marker gene of S. cerevisiae were inserted. As a proof of concept, the tyrosol biosynthetic pathway was constructed in the p2µM plasmid and in a pRS plasmid (pRS423). As a result, the p2µM plasmid presented lower plasmid loss rate than that of pRS423. Furthermore, higher tyrosol titers were achieved in S. cerevisiae harboring p2µM plasmid carrying the tyrosol pathway-related genes. Our study provided an improved genetic manipulation tool in S. cerevisiae for metabolic engineering applications, which may be widely applied for valuable product biosynthesis in yeast.

15.
Cell Host Microbe ; 29(3): 489-502.e8, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33548198

ABSTRACT

The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (Δ500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-ß levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-ß responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.


Subject(s)
COVID-19/immunology , COVID-19/virology , Interferon Type I/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Nonstructural Proteins/genetics , A549 Cells , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Base Sequence , COVID-19/blood , Cell Line , Child , Child, Preschool , Chlorocebus aethiops , Female , Gene Deletion , Genomics , HEK293 Cells , Humans , Infant , Interferon Type I/blood , Interferon-beta/blood , Interferon-beta/metabolism , Male , Middle Aged , Molecular Epidemiology , Reverse Genetics , Vero Cells , Viral Nonstructural Proteins/immunology , Young Adult
16.
Microb Biotechnol ; 14(6): 2605-2616, 2021 11.
Article in English | MEDLINE | ID: mdl-32990403

ABSTRACT

Tyrosol and its glycosylated product salidroside are important ingredients in pharmaceuticals, nutraceuticals and cosmetics. Despite the ability of Saccharomyces cerevisiae to naturally synthesize tyrosol, high yield from de novo synthesis remains a challenge. Here, we used metabolic engineering strategies to construct S. cerevisiae strains for high-level production of tyrosol and salidroside from glucose. First, tyrosol production was unlocked from feedback inhibition. Then, transketolase and ribose-5-phosphate ketol-isomerase were overexpressed to balance the supply of precursors. Next, chorismate synthase and chorismate mutase were overexpressed to maximize the aromatic amino acid flux towards tyrosol synthesis. Finally, the competing pathway was knocked out to further direct the carbon flux into tyrosol synthesis. Through a combination of these interventions, tyrosol titres reached 702.30 ± 0.41 mg l-1 in shake flasks, which were approximately 26-fold greater than that of the WT strain. RrU8GT33 from Rhodiola rosea was also applied to cells and maximized salidroside production from tyrosol in S. cerevisiae. Salidroside titres of 1575.45 ± 19.35 mg l-1 were accomplished in shake flasks. Furthermore, titres of 9.90 ± 0.06 g l-1 of tyrosol and 26.55 ± 0.43 g l-1 of salidroside were achieved in 5 l bioreactors, both are the highest titres reported to date. The synergistic engineering strategies presented in this study could be further applied to increase the production of high value-added aromatic compounds derived from the aromatic amino acid biosynthesis pathway in S. cerevisiae.


Subject(s)
Phenylethyl Alcohol , Saccharomyces cerevisiae , Glucosides , Metabolic Engineering , Phenols , Phenylethyl Alcohol/analogs & derivatives , Saccharomyces cerevisiae/genetics
17.
Expert Rev Gastroenterol Hepatol ; 15(3): 255-273, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33121300

ABSTRACT

INTRODUCTION: Early gastric cancer (EGC) is a well-defined gastric malignancy that is limited to the mucosa or submucosa, irrespective of lymph node metastasis. At an early stage, gastric cancer often does not cause symptoms until it becomes advanced, and it is a heterogeneous disease and usually encountered in its late stages. AREA COVERED: This comprehensive review will provide a novel insight into the evaluation of EGC epidemiology, defining terms, extensive etiology and risk factors, and timely diagnosis since prevention is an essential approach for controlling this cancer and reducing its morbidity and mortality. EXPERT OPINION: The causative manner of EGC is complex and multifactorial. In recent years, researchers have made significant contributions to understanding the etiology and pathogenesis of EGC, and standardization in the evaluation of disease activity. Though the incidence of this cancer is steadily declining in some advanced societies owing to appropriate interventions, there remains a serious threat to health in developing nations. Early detection of resectable gastric cancer is crucial for better patient outcomes.


Subject(s)
Stomach Neoplasms , Gastric Mucosa/pathology , Gastrointestinal Microbiome , Humans , Neoplasm Staging , Precancerous Conditions/diagnosis , Precancerous Conditions/etiology , Precancerous Conditions/pathology , Risk Factors , Stomach Neoplasms/classification , Stomach Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/etiology
18.
J Phys Condens Matter ; 33(4): 045801, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33146150

ABSTRACT

Series of Ca1-x Pr x Co2As2 (x = 0, 0.10, 0.25, 0.4, 0.6, 0.75, 0.85, 1) single crystals have been synthesized in order to clarify the variation of magnetic order from antiferromagnetic (AFM) in CaCo2As2 to ferromagnetic (FM) in PrCo2As2. It is found that the lattice constant of c-axis are contracted with the introduction of Pr into Ca sites in CaCo2As2. Electronic transport measurements reveal the metallicity in this system. Systematic magnetic measurements and analysis show that substituting only 10% of Pr for Ca changes the magnetic ground state from A-type AFM ordering of Co magnetic moment in CaCo2As2 to FM ordering in Ca1-x Pr x Co2As2 (0.1 ⩽ x ⩽ 1). Most importantly, the abrupt drop of low temperature magnetic susceptibility below T FiM with x ⩾ 0.25 and the observed magnetic pole reversal with x ⩾ 0.4 suggests an AFM coupling between Co 3d and Pr 4f magnetic sublattice. Finally, a detailed magnetic phase diagram in this system has been obtained.

20.
Article in English | MEDLINE | ID: mdl-32695773

ABSTRACT

Streptomyces strains produce a great number of valuable natural products. With the development of genome sequencing, a vast number of biosynthetic gene clusters with high potential for use in the discovery of valuable clinical drugs have been revealed. Therefore, emerging needs for tools to manipulate these biosynthetic pathways are presented. Although the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas 9) system has exhibited great capabilities for gene editing in multiple Streptomyces strains, it has failed to work in some newly discovered strains and some important industrial strains. Additionally, the protospacer adjacent motif (PAM) recognition scope of this system sometimes limits its applications for generating precise site mutations and insertions. Here, we developed three efficient CRISPR-FnCas12a systems for multiplex genome editing in several Streptomyces strains. Each system exhibited advantages for different applications. The CRISPR-FnCas12a1 system was efficiently applied in the industrial strain Streptomyces hygroscopicus, in which SpCas9 does not work well. The CRISPR-FnCas12a2 system was used to delete large fragments ranging from 21.4 to 128 kb. Additionally, the CRISPR-FnCas12a3 system employing the engineered FnCas12a mutant EP16, which recognizes a broad spectrum of PAM sequences, was used to precisely perform site mutations and insertions. The CRISPR-FnCas12a3 system addressed the limitation of TTN PAM recognition in Streptomyces strains with high GC contents. In summary, all the CRISPR-FnCas12a systems developed in this study are powerful tools for precise and multiplex genome editing in Streptomyces strains.

SELECTION OF CITATIONS
SEARCH DETAIL