Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (194)2023 04 21.
Article in English | MEDLINE | ID: mdl-37154570

ABSTRACT

The antimicrobial activities of nanoparticles and nanostructured surfaces, such as silver, zinc oxide, titanium dioxide, and magnesium oxide, have been explored previously in clinical and environmental settings and in consumable food products. However, a lack of consistency in the experimental methods and materials used has culminated in conflicting results, even amongst studies of the same nanostructure types and bacterial species. For researchers who wish to employ nanostructures as an additive or coating in a product design, these conflicting data limit their utilization in clinical settings. To confront this dilemma, in this article, we present four different methods to determine the antimicrobial activities of nanoparticles and nanostructured surfaces, and discuss their applicability in different scenarios. Adapting consistent methods is expected to lead to reproducible data that can be compared across studies and implemented for different nanostructure types and microbial species. We introduce two methods to determine the antimicrobial activities of nanoparticles and two methods for the antimicrobial activities of nanostructured surfaces. For nanoparticles, the direct co-culture method can be used to determine the minimum inhibitory and minimum bactericidal concentrations of nanoparticles, and the direct exposure culture method can be used to assess real-time bacteriostatic versus bactericidal activity resulting from nanoparticle exposure. For nanostructured surfaces, the direct culture method is used to determine the viability of bacteria indirectly and directly in contact with nanostructured surfaces, and the focused-contact exposure method is used to examine antimicrobial activity on a specific area of a nanostructured surface. We discuss key experimental variables to consider for in vitro study design when determining the antimicrobial properties of nanoparticles and nanostructured surfaces. All these methods are relatively low cost, employ techniques that are relatively easy to master and repeatable for consistency, and are applicable to a broad range of nanostructure types and microbial species.


Subject(s)
Anti-Infective Agents , Nanoparticles , Nanostructures , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Nanostructures/chemistry , Anti-Infective Agents/pharmacology , Bacteria , Surface Properties
2.
J Funct Biomater ; 14(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37103285

ABSTRACT

The effect of magnesium (Mg) content on the microstructure, mechanical properties, and cytocompatibility of degradable Zn-0.5Mn-xMg (x = 0.05 wt%, 0.2 wt%, 0.5 wt%) alloys was investigated. The microstructure, corrosion products, mechanical properties, and corrosion properties of the three alloys were then thoroughly characterized by scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD), and other methods. According to the findings, the grain size of matrix was refined by the addition of Mg, while the size and quantity of Mg2Zn11 phase was increased. The Mg content could significantly improve the ultimate tensile strength (UTS) of the alloy. Compared with the Zn-0.5Mn alloy, the UTS of Zn-0.5Mn-xMg alloy was increased significantly. Zn-0.5Mn-0.5Mg exhibited the highest UTS (369.6 MPa). The strength of the alloy was influenced by the average grain size, the solid solubility of Mg, and the quantity of Mg2Zn11 phase. The increase in the quantity and size of Mg2Zn11 phase was the main reason for the transition from ductile fracture to cleavage fracture. Moreover, Zn-0.5Mn-0.2Mg alloy showed the best cytocompatibility to L-929 cells.

3.
ACS Appl Mater Interfaces ; 15(3): 3731-3743, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36626669

ABSTRACT

Piezoelectric materials are promising for biomedical applications because they can provide mechanical or electrical stimulations via converse or direct piezoelectric effects. The stimulations have been proven to be beneficial for cell proliferation and tissue regeneration. Recent reports showed that doping different contents of reduced graphene oxide (rGO) or polyaniline (PANi) into biodegradable polyhydroxybutyrate (PHB) enhanced their piezoelectric response, showing potential for biomedical applications. In this study, we aim to determine the correlation between physiochemical properties and the in vitro cell response to the PHB-based composite scaffolds with rGO or PANi. Specifically, we characterized the surface morphology, wetting behavior, electrochemical impedance, and piezoelectric properties of the composites and controls. The addition of rGO and PANi resulted in decreased fiber diameters and hydrophobicity of PHB. The increased surface energy of PHB after doping nanofillers led to a reduced water contact angle (WCA) from 101.84 ± 2.18° (for PHB) to 88.43 ± 0.83° after the addition of 3 wt % PANi, whereas doping 1 wt % rGO decreased the WCA value to 92.56 ± 2.43°. Meanwhile, doping 0.2 wt % rGO into PHB improved the piezoelectric properties compared to the PHB control and other composites. Adding up to 1 wt % rGO or 3 wt % PANi nanofillers in PHB did not affect the adhesion densities of bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The aspect ratios of attached BMSCs on the composite scaffolds increased compared to the PHB control. The study indicated that the PHB-based composites are promising for potential applications such as regenerative medicine, tissue stimulation, and bio-sensing, which should be further studied.


Subject(s)
Graphite , Mesenchymal Stem Cells , Polymers/pharmacology , Polymers/chemistry , Graphite/pharmacology , Graphite/chemistry
4.
ACS Appl Bio Mater ; 5(6): 2664-2675, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35671525

ABSTRACT

Transparent yttria-stabilized zirconia (YSZ) ceramics are promising for cranial window applications because of their good mechanical and optical properties as well as biocompatibility. YSZ discs with different yttria concentrations were either processed via current-activated pressure-assisted densification (CAPAD) using commercial nanoparticles or densified via spark plasma sintering (SPS) using pyrolysis-synthesized nanoparticles in-house. This study provided critical results to screen composition, processing, microstructure, and cytocompatibility of transparent YSZ discs for cranial window applications. CAPAD-processed YSZ discs with 6 or 8 mol % yttria (6YSZ and 8YSZ) and SPS-densified YSZ discs with 4 mol % yttria (4YSZ_P) showed 200-350 nm polycrystalline grains containing 20-30 nm crystallite domains. SPS-densified YSZ discs with 8 mol % yttria (8YSZ_P) showed larger polycrystalline grains of 819 ± 155 nm with 29 ± 5 nm crystallite domains. CAPAD-processed YSZ discs with 3 mol % yttria (3YSZ) showed 39 ± 9 nm grains. Bone-marrow-derived stem cells (BMSCs) on the polished YSZ discs showed statistically higher spreading areas than those on the unpolished YSZ discs of the same compositions. Generally, polished 8YSZ, 4YSZ_P, and 8YSZ_P discs and unpolished 8YSZ_R, 4YSZ_PR, and 8YSZ_PR discs had lower average cell adhesion densities than other YSZ discs under direct contact conditions. Under indirect contact conditions, all the YSZ disc groups showed similar average cell adhesion densities to the Cell-only control. The groups of polished 4YSZ_P and 8YSZ_P discs, unpolished 4YSZ_PR and 8YSZ_PR discs, and particle control of 8YSZ_Pnp showed higher Y3+ ion concentrations than other groups. No mineral deposition was detected on the polished YSZ discs after cell culture. Considering multiple factors such as cytocompatibility, cell adhesion density, Y3+ ion release, mineral deposition, and optical transparency collectively, 8YSZ may be the best candidate for the cranial window applications. Further studies are needed to evaluate the long-term transparency and biocompatibility of YSZ discs.


Subject(s)
Yttrium , Zirconium , Ceramics , Yttrium/chemistry , Zirconium/chemistry
5.
Tissue Eng Part B Rev ; 28(6): 1235-1241, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35535856

ABSTRACT

Ischemic heart disease, a major risk factor for myocardial infarction (MI), occurs when the blood vessels supplying oxygen-rich blood to the heart become partially or fully occluded by lipid-rich plaques, resulting in myocardial cell death, remodeling, and scarring. In addition, MI occurs as result of lipid-rich plaque rupture, resulting in thrombosis and vessel occlusion. Cardiac fibroblasts (CFs) and CF-derived growth factors are crucial post-MI in myocardial remodeling. Information regarding the regenerative phenotypes of CFs is scarce; however, regenerative CFs are translationally relevant in myocardial regeneration following MI. The emerging technologies in regenerative cardiology offer cutting-edge translational opportunities, including synthetic cells. In this review, we critically reviewed the current knowledge and the ongoing research efforts on application of synthetic cells for improving cardiac regeneration post-MI. Impact statement Synthetic cells offer tremendous regenerative potential in otherwise deleterious cardiac remodeling postmyocardial infarction. Understanding the role of fibroblasts in cardiac healing and the therapeutic applications of synthetic cells would open a multitude of novel cardiac regenerative approaches. The novel concept of synthetic fibroblasts that emulate native cardiac fibroblasts can provide an effective solution in cardiac healing.


Subject(s)
Myocardial Infarction , Humans , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Fibroblasts/metabolism , Myocardium/metabolism , Lipids , Regeneration
6.
ACS Appl Mater Interfaces ; 14(9): 11051-11067, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35199989

ABSTRACT

Angiogenic magnetic hydrogels are attractive for tissue engineering applications because their integrated properties can improve angiogenesis while providing magnetic guidance and stimulation for tissue healing. In this study, we synthesized magnetic nanoparticles (MNPs) with curcumin as an angiogenic agent, referred to as CMNPs, via a one-pot coprecipitation method. We dispersed CMNPs in hyaluronic acid (HyA) to create angiogenic magnetic hydrogels. CMNPs showed a slightly reduced average diameter compared to that of MNPs and a curcumin content of 11.91%. CMNPs exhibited a sustained slow release of curcumin when immersed in a revised simulated body fluid (rSBF). Both CMNPs and MNPs showed a dose-dependent cytocompatibility when cultured with bone marrow-derived mesenchymal stem cells (BMSCs) using the direct exposure culture method in vitro. The average BMSC density increased when the concentrations of CMNPs or MNPs increased from 100 to 500 µg/mL, but the cell density decreased when the nanoparticle concentration reached 1000 µg/mL. CMNPs showed a weaker magnetic response than MNPs both in air and in water immediately after synthesis but retained the magnetism better than MNPs when embedded in the HyA hydrogel because of less oxidation. CMNPs were able to respond to magnetic guidance even when the porcine skin or muscle tissues were placed in between the nanoparticles and external magnet. The magnetic hydrogels of HyA_CMNP and HyA_MNP promoted the adhesion of BMSCs in a direct exposure culture. The HyA_CMNP group also showed the highest secretion of the vascular endothelial growth factor with the release of curcumin in vitro. Overall, our magnetic hydrogels integrated the desirable properties of cytocompatibility and angiogenesis with magnetic guidance, thus proving to be promising for improving tissue regeneration.


Subject(s)
Curcumin/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Magnetite Nanoparticles/chemistry , Wound Healing/drug effects , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/pharmacology , Animals , Biocompatible Materials , Cells, Cultured , Curcumin/metabolism , Drug Liberation , Hydrogen-Ion Concentration , Magnetics , Mesenchymal Stem Cells/drug effects , Rats, Sprague-Dawley , Swine , Vascular Endothelial Growth Factors/metabolism
7.
ACS Omega ; 5(38): 24613-24627, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33015479

ABSTRACT

Magnesium (Mg) and its alloys have attracted increasing attention in recent years as medical implants for repairing musculoskeletal injuries because of their promising mechanical and biological properties. However, rapid degradation of Mg and its alloys in physiological fluids limited their clinical translation because the accumulation of hydrogen (H2) gas and fast release of OH- ions could adversely affect the healing process. Moreover, infection is a major concern for internally implanted devices because it could lead to biofilm formation, prevent host cell attachment on the implants, and interfere osseointegration, resulting in implant failure or other complications. Fabricating nanostructured magnesium oxide (MgO) on magnesium (Mg) substrates is promising in addressing both problems because it could slow down the degradation process and improve the antimicrobial activity. In this study, nanostructured MgO layers were created on Mg substrates using two different surface treatment techniques, i.e., anodization and electrophoretic deposition (EPD), and cultured with Staphylococcus aureus in vitro to determine their antimicrobial properties. At the end of the 24-h bacterial culture, the nanostructured MgO layers on Mg prepared by anodization or EPD both showed significant bactericidal effect against S. aureus. Thus, nanostructured MgO layers on Mg are promising for reducing implant-related infections and complications and should be further explored for clinical translation toward antimicrobial biodegradable implants.

SELECTION OF CITATIONS
SEARCH DETAIL
...