Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(3): 1040-1047, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38099417

ABSTRACT

Ternary NiTiFe-LDH with an ultrathin nanosheet morphology was successfully fabricated via a facile co-precipitation method, followed by refluxing, and was used as a catalyst for oxidative coupling of amines to produce imines under visible light. The obvious superior activity observed in NiTiFe-LDH ultrathin nanosheets compared with binary NiTi-LDH and bulk NiTiFe-LDH can be ascribed to an enhanced light absorption capability caused by the introduction of Fe3+ ions as well as the ultrathin nanosheets which can minimize the recombination of the photogenerated charge carriers and provide more catalytically active sites for the reaction. As a result, more catalytically active O2˙- radicals are generated over NiTiFe-LDH ultrathin nanosheets, which leads to their superior activity. This study not only shows the possibility of using LDHs in photocatalytic organic transformations but also demonstrates an effective strategy to promote the activity of LDH-based photocatalysts via simultaneous composition and morphology modulation of LDHs.

2.
Dalton Trans ; 52(37): 13129-13136, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37655690

ABSTRACT

Carbon quantum dot (CQD)-decorated CdS nanocomposites were successfully fabricated via the self-assembly of CdS in the presence of preformed CQDs and were found to be efficient photocatalysts for the hydrogenation of nitrobenzene under visible light. Due to the presence of the frustrated Lewis acid-base pairs (FLPs) in their structure, CQDs act as an efficient catalyst to promote the proton-coupled hydrogenation of nitrobenzene over CQDs/CdS nanocomposites. Controllable and chemoselective hydrogenation of nitrobenzene to produce aniline, azoxybenzene, azobenzene and hydrazobenzene can be realized over CQDs/CdS via simply regulating the reaction medium including the hydrogen source, the solvent and the alkalinity. This study provides a highly efficient and economical photocatalytic system for the controllable and chemoselective hydrogenation of nitrobenzene under visible light. This work also highlights the great potential of semiconductor-based photocatalysis in light-initiated organic syntheses.

SELECTION OF CITATIONS
SEARCH DETAIL
...