Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(20): 14058-14066, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733559

ABSTRACT

Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li+) separation from industrial brines. However, very few MOF membranes can efficiently separate Li+ from brines of high Mg2+/Li+ concentration ratios and keep stable in ultrahigh Mg2+-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH)2 into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li+ extraction. The resulting membranes demonstrate excellent monovalent metal ion selectivity over divalent metal ions, with Li+/Mg2+ selectivity up to 103 since Mg2+ should overcome a higher energy barrier than Li+ when transported through the MOF pores, as confirmed by molecular dynamics simulations. Under dual-ion diffusion, as the Mg2+/Li+ mole ratio of the feed solution increases from 0.2 to 30, the membrane Li+/Mg2+ selectivity decreases from 1516 to 19, corresponding to the purity of lithium products between 99.9 and 95.0%. Further research on multi-ion diffusion that involves Mg2+ and three monovalent metal ions (K+, Na+, and Li+, referred to as M+) in the feed solutions shows a significant improvement in Li+/Mg2+ separation efficiency. The Li+/Mg2+ selectivity can go up to 1114 when the Mg2+/M+ molar concentration ratio is 1:1, and it remains at 19 when the ratio is 30:1. The membrane selectivity is also stable for 30 days in a highly concentrated solution with a high Mg2+/Li+ concentration ratio. These results indicate the feasibility of the MOFCMs for direct lithium extraction from brines with Mg2+ concentrations up to 3.5 M. This study provides an alternative strategy for designing efficient MOF membranes in extracting valuable minerals in the future.

2.
Small ; : e2401777, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747025

ABSTRACT

Bismuth-based electrocatalysts are effective for carbon dioxide (CO2) reduction to formate. However, at room temperature, these materials are only available in solid state, which inevitably suffers from surface deactivation, declining current densities, and Faradaic efficiencies. Here, the formation of a liquid bismuth catalyst on the liquid gallium surface at ambient conditions is shown as its exceptional performance in the electrochemical reduction of CO2 (i.e., CO2RR). By doping a trace amount of bismuth (740 ppm atomic) in gallium liquid metal, a surface enrichment of bismuth by over 400 times (30 at%) in liquid state is obtained without atomic aggregation, achieving 98% Faradic efficiency for CO2 conversion to formate over 80 h. Ab initio molecular simulations and density functional theory calculations reveal that bismuth atoms in the liquid state are the most energetically favorable sites for the CO2RR intermediates, superior to solid Bi-sites, as well as joint GaBi-sites. This study opens an avenue for fabricating high-performing liquid-state metallic catalysts that cannot be reached by elementary metals under electrocatalytic conditions.

4.
Sci Data ; 11(1): 208, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360835

ABSTRACT

Measuring muscle fatigue involves assessing various components within the motor system. While subjective and sensor-based measures have been proposed, a comprehensive comparison of these assessment measures is currently lacking. This study aims to bridge this gap by utilizing three commonly used measures: participant self-reported perceived muscle fatigue scores, a sports physiotherapist's manual palpation-based muscle tightness scores, and surface electromyography sensors. Compensatory muscle fatigue occurs when one muscle group becomes fatigued, leading to the involvement and subsequent fatigue of other muscles as they compensate for the workload. The evaluation of compensatory muscle fatigue focuses on nine different upper body muscles selected by the sports physiotherapist. With a cohort of 30 male subjects, this study provides a valuable dataset for researchers and healthcare practitioners in sports science, rehabilitation, and human performance. It enables the exploration and comparison of diverse methods for evaluating different muscles in isometric contraction.


Subject(s)
Electromyography , Isometric Contraction , Muscle Fatigue , Muscle, Skeletal , Humans , Male , Electromyography/methods , Isometric Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Self Report
5.
Nanoscale ; 16(12): 5976-5987, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38376499

ABSTRACT

Hydrothermal synthesis based upon the use of Al3+ as the dopant and/or ethanol as the solvent is effective in promoting the growth of hematite into nanoplates rich in the (001) surface, which is highly active for a broad range of catalytic applications. However, the underpinning mechanism for the flattening of hematite crystals is still poorly comprehended. To close this knowledge gap, in this work, we have attempted intensive computational modelling to construct a binary phase diagram for Fe2O3-Al2O3 under typical hydrothermal conditions, as well as to quantify the surface energy of hematite crystal upon coverage with Al3+ and ethanol molecules. An innovative coupling of density functional theory calculation, cluster expansion and Monte Carlo simulations in analogy to machine learning and prediction was attempted. Upon successful validation by experimental observation, our simulation results suggest an optimum atomic dispersion of Al3+ within hematite in cases when its concentration is below 4 at% otherwise phase separation occurs, and discrete Al2O3 nano-clusters can be preferentially formed. Computations also revealed that the adsorption of ethanol molecules alone can reduce the specific surface energy of the hematite (001) surface from 1.33 to 0.31 J m-2. The segregation of Al3+ on the (001) surface can further reduce the specific surface energy to 0.18 J m-2. Consequently, the (001) surface growth is inhibited, and it becomes dominant after the disappearance of other surfaces upon their continual growth. This work provides atomistic insights into the synergistic effect between the aluminium textural promoter and the ethanol capping agent in determining the morphology of hematite nanoparticles. The established computation approach also applies to other oxide-based catalysts in controlling their surface growth and morphology, which are critical for their catalytic applications.

6.
Nanoscale ; 16(7): 3693-3700, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38288860

ABSTRACT

Out-of-plane pressure and electron doping can affect interlayer interactions in van der Waals materials, modifying their crystal structure and physical and chemical properties. In this study, we used magnetic monolayer 1T/1T'-CrS2 and high symmetry 2D-honeycomb material GeC to construct a GeC/CrS2/GeC triple layered van der Waals heterostructure (vdWH). Based on density functional theory calculations, we found that applying out-of-plane strain and doping with electrons could induce a 1T'-to-1T phase transition and consequently the ferromagnetic (FM)-to-antiferromagnetic (AFM) transition in the CrS2 layer. Such a phase and magnetic transition arises from the pressure and electron-induced interlayer interaction enhancement. The electron doping can effectively decrease the critical compressive stress from ∼4.3 GPa (charge neutrality) to ∼664 MPa (Q = 9 × 10-3 e- per atom) for the FM-to-AFM transition. These properties could be used to fabricate and program the 2D lateral FM/AFM heterostructures for artificial controlled spin texture and miniaturized spintronic devices.

7.
Article in English | MEDLINE | ID: mdl-38082921

ABSTRACT

Surface electromyography (sEMG) sensor measures the user's muscle activities by noninvasively placing electrodes on the surface of the user's skin. It has been widely used in monitoring various human movements. Recently a wearable and flexible epidermal sensor system called Electronic Tattoo (E-Tattoo) has been developed to enable intimate attachment of electrodes on the skin, improving long-term comfort. In order to make the E-Tattoo usable in monitoring muscle activities, it is always connected with a connector and signal processing blocks to collect and process the measured sEMG signals. We call it an integrated system. This paper investigates the usability of a prototype of the integrated system developed in the laboratory for monitoring muscle activities by testing its comfort with user experience surveys and comparing the quality of the sEMG signals by widely used performance metrics. Two typical movements, maximum voluntary isometric and non-isometric contractions, are considered for the experiments. Our preliminary results on five subjects demonstrate the effectiveness of the proposed integrated system. This system showed a comparable signal quality for these two movements as the commercial product with a much better comfort feeling from the user. It is also interesting to note that this prototype shows a much better signal-to-motion artifact ratio (SMR), which reflects the ability to measure muscle activities during active movements, compared with the commercial product, showing the potential of using this integrated system in monitoring sEMGs during active and dynamic movements.


Subject(s)
Tattooing , Humans , Electromyography/methods , Signal Processing, Computer-Assisted , Electronics , Movement
8.
Nat Commun ; 14(1): 7891, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036500

ABSTRACT

Layered thio- and seleno-phosphate ferroelectrics, such as CuInP2S6, are promising building blocks for next-generation nonvolatile memory devices. However, because of the low Curie point, the CuInP2S6-based memory devices suffer from poor thermal stability (<42 °C). Here, exploiting the electric field-driven phase transition in the rarely studied antiferroelectric CuCrP2S6 crystals, we develop a nonvolatile memristor showing a sizable resistive-switching ratio of ~ 1000, high switching endurance up to 20,000 cycles, low cycle-to-cycle variation, and robust thermal stability up to 120 °C. The resistive switching is attributed to the ferroelectric polarization-modulated thermal emission accompanied by the Fowler-Nordheim tunneling across the interfaces. First-principles calculations reveal that the good device performances are associated with the exceptionally strong ferroelectric polarization in CuCrP2S6 crystal. Furthermore, the typical biological synaptic learning rules, such as long-term potentiation/depression and spike amplitude/spike time-dependent plasticity, are also demonstrated. The results highlight the great application potential of van der Waals antiferroelectrics in high-performance synaptic devices for neuromorphic computing.

9.
Phys Chem Chem Phys ; 25(27): 18259-18265, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37395261

ABSTRACT

Natural gas reservoirs usually contain considerable amounts of nitrogen (N2). Methane (CH4) as the main component in natural gas must be purified before transferring to the pipeline or storing as liquified natural gas (LNG). Currently, energy-intensive cryogenic distillation is the only industrial approach for N2 rejection in natural gas. The adsorption process based on a N2-selective adsorbent can minimize the separation cost. However, the search for an adsorbent that can selectively reject N2 in natural gas has lasted for decades. Here, we report a microporous zeolite called NaZSM-25 capable of adsorbing N2 over CH4 with an exceptional selectivity of 47 at room temperature that outperforms all previously known N2-selective adsorbents. At 295 K and 100 kPa, the N2 and CH4 uptakes on NaZSM-25 were 0.25 and 0.005 mmol g-1, respectively. CH4 showed negligible external surface adsorption in the whole temperature range of 273-323 K. Theoretical studies through replica exchanged Monte Carlo, molecular dynamics, and ab initio density functional theory (DFT) proved the diffusion limitation of CH4 as a result of 8-membered ring (8MR) pore opening deformation by Na+ cation. The DFT results showed the diffusion energy barriers of 63 and 96 kJ mol-1 for N2 and CH4, respectively, when passing an 8MR occupied with a Na+. NaZSM-25 is a promising adsorbent to be utilized in a pressure swing adsorption process at room temperature to minimize the energy consumption in N2 rejection units.

10.
Nat Nanotechnol ; 18(10): 1154-1161, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37488219

ABSTRACT

Stacking engineering in van der Waals (vdW) materials is a powerful method to control topological electronic phases for quantum device applications. Atomic intercalation into the vdW material can modulate the stacking structure at the atomic scale without a highly technical protocol. Here we report that lithium intercalation in a topologically structured graphene/buffer system on SiC(0001) drives dynamic topological domain wall (TDW) motions associated with stacking order change by using an in situ aberration-corrected low-energy electron microscope in combination with theoretical modelling. We observe sequential and selective lithium intercalation that starts at topological crossing points (AA stacking) and then selectively extends to AB stacking domains. Lithium intercalation locally changes the domain stacking order to AA and in turn alters the neighbouring TDW stacking orders, and continuous intercalation drives the evolution of the whole topological structure network. Our work reveals moving TDWs protected by the topology of stacking and lays the foundation for controlling the stacking structure via atomic intercalation. These findings open up new avenues to realize intercalation-driven vdW electronic devices.

11.
Sci Adv ; 9(27): eadf8412, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418527

ABSTRACT

State-of-the-art ion-selective membranes with ultrahigh precision are of significance for water desalination and energy conservation, but their development is limited by the lack of understanding of the mechanisms of ion transport at the subnanometer scale. Herein, we investigate transport of three typical anions (F-, Cl-, and Br-) under confinement using in situ liquid time-of-flight secondary ion mass spectrometry in combination with transition-state theory. The operando analysis reveals that dehydration and related ion-pore interactions govern anion-selective transport. For strongly hydrated ions [(H2O)nF- and (H2O)nCl-], dehydration enhances ion effective charge and thus the electrostatic interactions with membrane, observed as an increase in decomposed energy from electrostatics, leading to more hindered transport. Contrarily, weakly hydrated ions [(H2O)nBr-] have greater permeability as they allow an intact hydration structure during transport due to their smaller size and the most right-skewed hydration distribution. Our work demonstrates that precisely regulating ion dehydration to maximize the difference in ion-pore interactions could enable the development of ideal ion-selective membranes.


Subject(s)
Dehydration , Water , Humans , Ion Transport , Ions , Anions/chemistry , Water/chemistry
12.
Nano Lett ; 23(12): 5555-5561, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37315026

ABSTRACT

Ion adsorption within nanopores is involved in numerous applications. However, a comprehensive understanding of the fundamental relationship between in-pore ion concentration and pore size, particularly in the sub-2 nm range, is scarce. This study investigates the ion-species-dependent concentration in multilayered graphene membranes (MGMs) with tunable nanoslit sizes (0.5-1.6 nm) using nuclear magnetic resonance and computational simulations. For Na+-based electrolytes in MGMs, the concentration of anions in graphene nanoslits increases in correlation with their chaotropic properties. As the nanoslit size decreases, the concentration of chaotropic ion (BF4-) increases, whereas the concentration of kosmotropic ions (Cit3-, PO43-) and other ions (Ac-, F-) decreases or changes slightly. Notably, anions remain more concentrated than counter Na+ ions, leading to electroneutrality breakdown and unipolar anion packing in MGMs. A continuum modeling approach, integrating molecular dynamic simulation with the Poisson-Boltzmann model, elucidates these observations by considering water-mediated ion-graphene non-electrostatic interactions and charge screening from graphene walls.

13.
Small Methods ; 7(9): e2300050, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37144659

ABSTRACT

An electrical-biased or mechanical-loaded scanning probe written on the ferroelectric surface can generate programmable domain nanopatterns for ultra-scaled and reconfigurable nanoscale electronics. Fabricating ferroelectric domain patterns by direct-writing as quickly as possible is highly desirable for high response rate devices. Using monolayer α-In2 Se3 ferroelectric with ≈1.2 nm thickness and intrinsic out-of-plane polarization as an example, a writing-speed dependent effect on ferroelectric domain switching is discovered. The results indicate that the threshold voltages and threshold forces for domain switching can be increased from -4.2 to -5 V and from 365 to 1216 nN, respectively, as the writing-speed increases from 2.2 to 10.6 µm s-1 . The writing-speed dependent threshold voltages can be attributed to the nucleations of reoriented ferroelectric domains, in which sufficient time is needed for subsequent domain growth. The writing-speed dependent threshold forces can be attributed to the flexoelectric effect. Furthermore, the electrical-mechanical coupling can be employed to decrease the threshold force, achieving as low as ≈189±41 nN, a value smaller than those of perovskite ferroelectric films. Such findings reveal a critical issue of ferroelectric domain pattern engineering that should be carefully addressed for programmable direct-writing electronics applications.

14.
J Phys Chem Lett ; 14(13): 3160-3167, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36961418

ABSTRACT

Combined with the inherent spin-orbital coupling effect, the elemental ferroelectricity of monolayer Bi (bismuthene) is the critical property that renders this system a 2D ferroelectric topological insulator. Here, using first-principles calculations, we systematically investigate the ferroelectric polarization in bismuthene nanoribbons and discover the width size limiting effect arising from the edge effects. The decreasing width led to the spontaneous transformation of the zigzag (ZZ) and armchair (AC) paired Bi nanoribbons into newly discovered high-symmetric nonpolarized nanoribbons. For ZZ-paired nanoribbons, the driving force of the phase transition is attributed to the depolarization field, similar to the conventional perovskite ferroelectric thin films. Instead, edge stress as a novel mechanism played a major role in the phase transition of AC-paired nanoribbons. Inspired by such a revealed mechanism, the phase transition and related ultrahigh piezoelectricity can be achieved by strain engineering in Bi nanoribbons, which could enable new applications for 2D ferroelectric devices.

15.
Langmuir ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36626709

ABSTRACT

Methane (CH4) is the primary component of natural gas and must be purified to a certain level before it can be used as pipeline gas or liquified natural gas (LNG). In particular, nitrogen (N2), a common contaminant in natural gas needs to be rejected to increase the heating value of the gas and meet the LNG product specifications. The development of energy-efficient N2 removal technologies is hampered by N2's inertness and its resemblance to CH4 in terms of kinetic size and polarizability. N2-selective materials are so rare. Here, for the first time, we screened 1425 alkali metal cation exchange zeolites to identify the candidates with the best potential for the separation of N2 from CH4. We discovered a few extraordinary zeolite frameworks capable of achieving equilibrium selectivity toward N2. Particularly, Li+-RRO-3 zeolite with a specific two-dimensional structure demonstrated a selective N2 adsorption capacity of 2.94 mmol/g at 283 K and 1 bar, outperforming the capacity of all known zeolites. Through an ab initio density functional theory study, we found that the five-membered ring of the RRO framework is the most stable cationic site for Li+, and this Li+ can interact with multiple N2 molecules but only one CH4, revealing the mechanism for the high capacity and selectivity of N2. This work suggests promising adsorbents to enable N2 rejection from CH4 in the gas industry without going for energy-intensive cryogenic distillations.

16.
Nat Commun ; 14(1): 236, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36646676

ABSTRACT

Although two-dimensional (2D) materials have grown into an extended family that accommodates hundreds of members and have demonstrated promising advantages in many fields, their practical applications are still hindered by the lack of scalable high-yield production of monolayer products. Here, we show that scalable production of monolayer nanosheets can be achieved by a facile ball-milling exfoliation method with the assistance of viscous polyethyleneimine (PEI) liquid. As a demonstration, graphite is effectively exfoliated into graphene nanosheets, achieving a high monolayer percentage of 97.9% at a yield of 78.3%. The universality of this technique is also proven by successfully exfoliating other types of representative layered materials with different structures, such as carbon nitride, covalent organic framework, zeolitic imidazolate framework and hexagonal boron nitride. This scalable exfoliation technique for monolayer nanosheets could catalyze the synthesis and industrialization of 2D nanosheet materials.

17.
Nat Commun ; 14(1): 286, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653373

ABSTRACT

Controllable fabrication of angstrom-size channels has been long desired to mimic biological ion channels for the fundamental study of ion transport. Here we report a strategy for fabricating angstrom-scale ion channels with one-dimensional (1D) to three-dimensional (3D) pore structures by the growth of metal-organic frameworks (MOFs) into nanochannels. The 1D MIL-53 channels of flexible pore sizes around 5.2 × 8.9 Å can transport cations rapidly, with one to two orders of magnitude higher conductivities and mobilities than MOF channels of hybrid pore configurations and sizes, including Al-TCPP with 1D ~8 Å channels connected by 2D ~6 Å interlayers, and 3D UiO-66 channels of ~6 Å windows and 9 - 12 Å cavities. Furthermore, the 3D MOF channels exhibit better ion sieving properties than those of 1D and 2D MOF channels. Theoretical simulations reveal that ion transport through 2D and 3D MOF channels should undergo multiple dehydration-rehydration processes, resulting in higher energy barriers than pure 1D channels. These findings offer a platform for studying ion transport properties at angstrom-scale confinement and provide guidelines for improving the efficiency of ionic separations and nanofluidics.

18.
Sci Adv ; 9(4): eabq1369, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36706186

ABSTRACT

Single-ion selectivity with high precision has long been pursued for fundamental bioinspired engineering and applications such as in ion separation and energy conversion. However, it remains a challenge to develop artificial ion channels to achieve single-ion selectivity comparable to their biological analogs, especially for high Na+/K+ selectivity. Here, we report an artificial sodium channel by subnanoconfinement of 4'-aminobenzo-15-crown-5 ethers (15C5s) into ~6-Å-sized metal-organic framework subnanochannel (MOFSNC). The resulting 15C5-MOFSNC shows an unprecedented Na+/K+ selectivity of tens to 102 and Na+/Li+ selectivity of 103 under multicomponent permeation conditions, comparable to biological sodium channels. A co-ion-responsive single-file transport mechanism in 15C-MOFSNC is proposed for the preferential transport of Na+ over K+ due to the synergetic effects of size exclusion, charge selectivity, local hydrophobicity, and preferential binding with functional groups. This study provides an alternative strategy for developing potential single-ion selective channels and membranes for many applications.

19.
J Hazard Mater ; 439: 129620, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35908397

ABSTRACT

The chlorine evolution mechanism remains unclear during the thermal treatment of CaCl2/Ca(OH)Cl-containing solid waste. In this paper, we have conducted both experimental investigation and density functional theory (DFT) calculation to elucidate the mechanism of pyro-hydrolysis of CaCl2 with and without SiO2 in the temperature ranges of 400-900 °C. It was determined that pyro-hydrolysis of CaCl2 alone generated a maximum of 12% HCl by decomposition into Ca(OH)Cl, which is a stable intermediate that can be reverted to CaCl2 at 800 °C. Upon the addition of SiO2 at an equimolar ratio to CaCl2, the HCl release extent was accelerated to 50% at 900 °C. Both experiments and DFT calculations prove that the added SiO2 can promote the dissociation of water molecules which provides hydroxyl ions that enable the conversion of CaCl2 into Ca(OH)Cl at low temperatures. The resulting Ca(OH)Cl can also quickly react with SiO2 to form Cl-bearing silicates such as Ca2SiO3Cl2 and Ca3SiO4Cl2 with weakened CaCl bond that are relatively easy to cleave into Cl-free CaSiO3 and HCl(g) from 800 °C.

20.
J Am Chem Soc ; 143(37): 15195-15204, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34516739

ABSTRACT

Nitrogen (N2) rejection from methane (CH4) is the most challenging step in natural gas processing because of the close similarity of their physical-chemical properties. For decades, efforts to find a functioning material that can selectively discriminate N2 had little outcome. Here, we report a molecular trapdoor zeolite K-ZSM-25 that has the largest unit cell among all zeolites, with the ability to capture N2 in favor of CH4 with a selectivity as high as 34. This zeolite was found to show a temperature-regulated gas adsorption wherein gas molecules' accessibility to the internal pores of the crystal is determined by the effect of the gas-cation interaction on the thermal oscillation of the "door-keeping" cation. N2 and CH4 molecules were differentiated by different admission-trigger temperatures. A mild working temperature range of 240-300 K was determined wherein N2 gas molecules were able to access the internal pores of K-ZSM-25 while CH4 was rejected. As confirmed by experimental, molecular dynamic, and ab initio density functional theory studies, the outstanding N2/CH4 selectivity is achieved within a specific temperature range where the thermal oscillation of door-blocking K+ provides enough space only for the relatively smaller molecule (N2) to diffuse into and through the zeolite supercages. Such temperature-regulated adsorption of the K-ZSM-25 trapdoor zeolite opens up a new approach for rejecting N2 from CH4 in the gas industry without deploying energy-intensive cryogenic distillation around 100 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...