Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
J Colloid Interface Sci ; 678(Pt A): 1165-1175, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39284271

ABSTRACT

CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.

2.
Environ Monit Assess ; 196(9): 816, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145878

ABSTRACT

Obtaining accurate cultivated land distribution data is crucial for sustainable agricultural development. The current cultivated land extraction studies mainly analyze crops on a regular shape and a small block scale. Aiming at the problem of fragmentation of plots in complexly shaped cultivated land leads to variable scales and blurred edges and the difficulty of extracting the context information by kernel convolution operation of the CNN-based model. We propose a complexly shaped farmland extraction network considering multi-scale features and edge priors (MFEPNet). Specifically, we design a context cross-attention fusion module to couple the local-global features extracted by the two-terminal path CNN-transformer network, which obtains more accurate cultivated land plot representations. This paper constructs the relation maps through a multi-scale feature reconstruction module to realize multi-scale information compensates by combining the gated weight parameter based on information entropy. Additionally, we design a texture-enhanced edge module, which uses the attention mechanism to fuse the edge information of texture feature extraction and the reconstructed feature map to enhance the edge features. In general, the network effectively reduces the influence of variable scale, blurred edges, and limited global field of view. The novel model proposed in this paper is compared with classical deep learning models such as UNet, DeeplabV3 +, DANet, PSPNet, RefineNet, SegNet, ACFNet, and OCRNet on the regular and irregular farmland datasets divided by IFLYTEK and Netherlands datasets. The experimental results show that MFEPNet achieves 92.40 % and 91.65 % MIoU on regular and irregular farmland datasets, which is better than the benchmark experimental model.


Subject(s)
Agriculture , Crops, Agricultural , Crops, Agricultural/growth & development , Environmental Monitoring/methods , Conservation of Natural Resources , Neural Networks, Computer , Deep Learning , Farms
3.
Molecules ; 29(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675710

ABSTRACT

Carbon nitride (C3N4) has gained considerable attention and has been regarded as an ideal candidate for photocatalytic hydrogen evolution. However, its photocatalytic efficiency is still unsatisfactory due to the rapid recombination rate of photo-generated carriers and restricted surface area with few active sites. Herein, we successfully synthesized a single-atom Pt cocatalyst-loaded photocatalyst by utilizing the anchoring effect of carbon dots (CDs) on C3N4. The introduction of CDs onto the porous C3N4 matrix can greatly enhance the specific surface area of C3N4 to provide more surface-active sites, increase light absorption capabilities, as well as improve the charge separation efficiency. Notably, the functional groups of CDs can efficiently anchor the single-atom Pt, thus improving the atomic utilization efficiency of Pt cocatalysts. A strong interaction is formed via the connection of Pt-N bonds, which enhances the efficiency of photogenerated electron separation. This unique structure remarkably improves its H2 evolution performance under visible light irradiation with a rate of 15.09 mmol h-1 g-1. This work provides a new approach to constructing efficient photocatalysts by using CDs for sustainable hydrogen generation, offering a practical approach to utilizing solar energy for clean fuel production.

4.
Environ Sci Pollut Res Int ; 31(7): 10635-10647, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198093

ABSTRACT

Hydrometallurgy recycling of heavy metals from electroplating sludge is of hot spot in recent decades. Such recycling was tedious in the separation of impure Fe/Al prior to heavy metals from acid leachate after sludge dissolution. Herein, a facile hydrothermal route was developed to separate Fe/Al from Cu-bearing leachate. The results showed that when the leachate was directly hydrothermally treated at 160 °C in the presence of nitrate and ethanol, Al/Cu were stable in the leachate, but nearly 100% Fe was removed as hematite nanoparticles. With the addition of chloridion, the removal efficiencies of Fe/Al/Cu did not change apparently, but the corresponding precipitate was akageneite, not hematite. By replacing chloridion with sulfate, nearly 100% Fe and 98.6% Al were separated as natrojarosite/natroalunite block, while the Cu loss was only 1.7%. However, with the supplementary of phosphate, the Fe/Al removal achieved nearly 100%, but the Cu removal also achieved by 92.6%. The thermodynamic analysis showed that Cu was precipitated rapidly via the phosphate/Cu oxyhydroxide route by adding phosphate but removed slightly via the coordination route on the Fe/Al precipitates with the addition of nitrate, chloridion, and sulfate. In summary, Fe was effectively separated as hematite, akageneite, natrojarosite, and phosphate halite, in the presence of nitrate, chloridion, sulfate, and phosphate, separately. But the removal of Al as natroalunite and AlPO4 only started by adding sulfate and phosphate, respectively. Such results enabled a short hydrometallurgy process to effectively recycle heavy metals from electroplating sludge.


Subject(s)
Ferric Compounds , Metals, Heavy , Sewage , Nitrates , Phosphates , Sulfates
5.
Neuropsychiatr Dis Treat ; 19: 2241-2249, 2023.
Article in English | MEDLINE | ID: mdl-37900670

ABSTRACT

Objective: Only about one-third of depressed patients respond to initial antidepressant treatment. Therefore, it is crucial to find effective predictors of antidepressants. The purpose of our study was to learn the relationship between EEG theta power, theta asymmetry, and the efficacy of escitalopram. Methods: The study included 34 patients with depression. Before and after each patient's course of treatment, EEG data was gathered. Both the Hamilton Anxiety Scale (HAMA) and the 17-item Hamilton Depression Scale (HAMD-17) were evaluated simultaneously. The natural logarithm of right frontal theta power minus left frontal theta power was used to calculate inter-electrode theta asymmetry (AT). Results: First, our study found no statistically significant difference between intra-electrode theta power and inter-electrode AT before and after treatment (P ≥ 0.05). When we later looked at the data regarding treatment effects, the findings revealed that patients (n = 9) who did not respond to treatment had lower baseline theta power at C4 [6.190 (2.000, 12.990) vs 15.800 (7.255, 22.330), z = -2.166, P = 0.030]. The two groups had no difference in other electrodes (P ≥ 0.05). The AT of C3/C4 in non-responders (n = 9) was lower [0.012 (0.795) vs 0.733 (0.539), t = -3.224, P = 0.005]. However, there was no difference in inter-electrode AT between the two groups in F3/F4 and F7/F8 (P ≥ 0.05). We finally show that the theta power at C4 was negatively correlated with HAMD scores before treatment (r = -0.346, P = 0.045). Conclusion: Our findings determined that increased theta power and positive asymmetry in the right frontal-central area correlate with favourable escitalopram treatment, providing a basis for finding predictive markers for antidepressants.

6.
Front Chem ; 11: 1201390, 2023.
Article in English | MEDLINE | ID: mdl-37273511

ABSTRACT

Red mud (RM) a solid waste generated by the bauxite smelting industry, is a rich source of metal resources, especially Ti, and its recycling can bring significant environmental and economic benefits. In this study, precious metal Ti was efficiently recovered from red mud using a coupled acid leaching and boiling route for the effective separation of low-value metals. The red mud which contained mainly 10.69% Si, 12.1% Al, 15.2% Ca, 10.99% Fe, and 4.37% Ti, was recovered in five steps. First, a nitric acid solution was used to leach the metals in multiple stages, resulting in an acidic leach solution with high concentrations of Fe, Al, Ti, and Ca ions 2.7 g/L, 4.7 g/L, 5.43 g/L, and 1.8 g/L, respectively. Then, a small amount of sucrose was added as a catalyst to recover Ti from the leach solution under hydrothermal conditions, resulting in the targeted recovery of 98.6% of Ti in the form of high-purity anatase while Fe, Al, and Ca remained in the solution. Next, the Fe in solution was separated as hematite products at a temperature of 110°C and a reaction time of 4 h. Similarly, the Al in the solution was separated and precipitated as boehmite by heating it at 260°C for a reaction time of 20 h. Finally, the remaining Ca in solution was recovered by simple pH regulation. Economic accounting assessment showed that the method yields $101.06 for 1 t of red mud treated, excluding labor costs. This study provides a novel approach to recover precious metals from metal wastes through the whole process resource recovery of solid waste red mud.

7.
Environ Sci Pollut Res Int ; 30(11): 31102-31115, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36441309

ABSTRACT

Pilot scale production of one-dimensional (FeS2)nn- rods was performed by using an automatic 20 L vessel at 80 °C under atmosphere condition with the resource utilization of Fe-rich sludge. The sludge was simulated at lab-scale with chemical pure of ferric trichloride. After the sludge treatment, the corresponding rods were not formed at room temperature. But by heating at 80 °C, erdite rod was well-crystallized after 0.5 h by only adding Na halite, and KFeS2 rod was crystallized weakly after 2 h and highly at 10 h with the addition of K halite. After 48 h heating, the rods grow radially to 300 nm for erdite, but to 5 µm for KFeS2. However, at room temperature, erdite rod was converted to high crystallized KFeS2 in KOH water or ethanol solution, whilst the conversion of KFeS2 rod to erdite also occurred in NaOH water solution, but terminated in NaOH ethanol solution, without any morphology change. It is also noted that with the presence of both Na and K halite, the rod was an intermediate of erdite to KFeS2 with 1 µm length after heating at 100 °C but converted to 10-µm-length KFeS2 crystal at the temperature of > 120 °C. The thermodynamic results confirmed that during the rod polymerization, the Fe(OH)3HS- formation was the sole rate-limiting step and showed a positive Gibbs value of 6.45 kJ/mol at room temperature and negative values at the temperature of > 48 °C. In summary, this method not only enabled the vaporization of waste Fe-rich sludge as value-added rods without generating any secondary waste but also showed a new route for the in situ conversion of erdite/KFeS2 rods at room temperature.


Subject(s)
Sewage , Water , Sewage/chemistry , Sodium Hydroxide , Temperature , Water/chemistry , Iron
8.
Front Chem ; 10: 916368, 2022.
Article in English | MEDLINE | ID: mdl-35936105

ABSTRACT

The flue gas desulfurization wastewater is highly saline and has too many refractory pollutants to be recycled during the desulfurization process of the coal-fired heating plant. Given that waste heat is abundant in coal-fired heating plants, a thermal treatment method was developed to simultaneously remove sulfates and nitrates from the wastewater, with the production of chemical-grade natroalunite and recycled water. The results showed that sulfates and nitrates were 50.3 and 10 g/L in the wastewater, respectively, and only 2.8% and 9.1% were removed after direct treatment at 270°C for 7 h; but these rates increased to 99.3% and 99.9%, respectively, with the addition of commercial poly aluminum chloride. Mass balance summarized that the treatment of 1 ton wastewater needed 0.1 ton PAC and produced 0.11 ton natroalunite and 0.92 ton recycle water. The removal of sulfates and nitrates was mainly done by the precipitation reaction of sulfates such as natroalunite and the redox reaction between nitrates and organics, respectively. Thermodynamic analysis demonstrated that the precipitate reaction occurred at 45°C and accelerated in the temperature range of 45-270°C, but became slow with the decrease of sulfate and Al concentrations in wastewater. Four other reagents were also used for wastewater treatment in comparison with PAC and showed the following order of performance: PAC > citrate calcium > limestone > subacetate aluminum > citrate ferric. This method provided a practical route to treat wastewater from flue gas desulfurization without generating secondary waste.

9.
Front Chem ; 10: 967589, 2022.
Article in English | MEDLINE | ID: mdl-35928216

ABSTRACT

The background value of iron in red soil is superior, primarily absorbed and homogeneously encapsulated in harvested biomass. However, this property on the high-value utilization of bionic iron-encapsulated biomass remains unknown. In this study, special biochar (Fe@BC) was obtained from this kind of biomass by one-step pyrolysis method, which was further used to activate peroxydisulfate (PDS) and degrade 2,4-dichlorophenol (2,4-DCP). The results showed that Fe3O4 was formed and homogeneously embedded in biochar at 500oC. Comparing to catalysts prepared by impregnation pyrolysis (Fe/BC), Fe@BC exhibited excellent degradation performance (90.9%, k = 0.0037 min-1) for 2,4-DCP. According to the free radicals quenching studies, hydroxyl radicals (·OH) and superoxide radicals (·O2 -) were the dominant reactive oxygen species (ROS) in Fe@BC/PDS system. Importantly, a PDS adsorption model was established, and the electron transport and PDS activation in the core-shell structure were demonstrated by DFT calculations. Therefore, this study could supply a high-performance catalyst and significant implications for high-value biomass utilization in red soil.

10.
ACS Appl Mater Interfaces ; 14(19): 22363-22371, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35507422

ABSTRACT

Organic afterglow materials based on carbon dots (CDs) have aroused extensive attention for their potential applications in sensing, photoelectric devices, and anticounterfeiting. Effective methods to control the CD structure and modulate the energy levels are critical but still challenging. Here, we demonstrate a method to modulate the afterglow emission of CDs@SiO2 composites by controlling the carbonization degree of CDs with variable calcining temperatures. The CDs@SiO2-Raw prepared with a hydrothermal bottom-up synthesis method shows a more polymerized structure of CDs with low carbonization degree, which emits long-lived thermally activated delayed fluorescence (TADF) with the lifetime of 252 ms. After calcination at 550 °C, CDs@SiO2-550 exhibits a larger conjugated π-domain structure with higher carbonization degree, thus inducing room-temperature phosphorescence (RTP) emission with a lifetime of 451 ms. The transformation of the carbonization degree of CD structures leads to changes in energy levels and ΔEST, which affect their afterglow luminescence behaviors. This work proposes a new concept to modulate the afterglow emission of CDs@SiO2 composites and forecasts potential applications of CD-based afterglow materials.

11.
Environ Sci Pollut Res Int ; 28(32): 44408-44419, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33847891

ABSTRACT

Fe-bearing salt and minerals are common reagents used in activating peroxymonosulfate (PMS) for Fenton-like oxidation in wastewater treatment. Fe-bearing reagents are used in mass production, which generate abundant Fe-bearing waste sludge in the absence of a reductant for Fe3+/Fe2+ cycling. Herein, a novel Fe/S-bearing mineral, erdite, was synthesized with a one-step hydrothermal route. The material exerted an Fe/S synergetic effect for p-nitrophenol degradation upon PMS activation and showed a one-dimensional structure similar to that of (FeS2)nn-. It contained short rods with diameters of 100 nm and lengths ranging from 200 to 400 nm. It grew radically to 0.8-2 µm in length upon the addition of MnO2. Ps-0.5, prepared by adding MnO2 in an Mn/Fe molar ratio of 0.5, showed optimal efficiency in removing approximately 99.4% of p-nitrophenol upon PMS activation. Only 3.3% of p-nitrophenol was removed without MnO2. The efficiency of p-nitrophenol removal through Ps-0.5 activation was higher than that through FeSO4, nanoscale zero-valent iron (nZVI), CuFeS2, and MnSO4 activation. The formed erdite rods were spontaneously hydrolyzed to Fe/S-bearing flocs, in which an electron was used by structural S to reduce Fe3+ to Fe2+ upon PMS activation. The reduction resulted in a high p-nitrophenol removal rate. This study provided new insight into the development of an effective PMS activator in wastewater treatment.


Subject(s)
Nanotubes , Water Purification , Manganese Compounds , Nitrophenols , Oxides , Peroxides
12.
Nanoscale ; 10(47): 22348-22356, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30468225

ABSTRACT

Decreasing Pd usage whilst maintaining a superior performance is promising, but remains a challenge in the catalytic field. Herein, we have demonstrated the highly efficient promotion of Mo2N with a reduced amount of Pd for the liquid-phase hydrogenation reaction. The Mo2N (2-3 nm) was uniformly anchored onto mesoporous SBA-15 by using PMo12 as the Mo source. The small size and good dispersion of Mo2N is favourable for allowing their effective contact with post-loading Pd. This good contact is conducive to developing a synergistic catalyst, which was verified by studying the liquid-phase hydrogenation of p-nitrophenol (PNP) to p-aminophenol (PAP) with NaBH4 as the H source. The conversion ability of PNP to PAP on 1 wt% Pd-Mo2N/SBA-15 was vastly superior to 1 wt% Pd/SBA-15 and even better than 20 wt% Pd/SBA-15. The low-Pd, highly efficient catalysis is ascribed to the transfer of the electrons from Mo2N to Pd for the easy activation of H. The synergy can be affected by the type of support used. SBA-15 is superior to SiO2 and the other supports, which could be related to the large surface area and the plentiful number of pores on SBA-15, which is favourable to the dispersion of Pd and Mo2N, and the transfer/diffusion of the reactants. In particular, a highly efficient catalyst can be achieved at an even more reduced Pd loading (0.05 wt%). The current method describes the design of a highly efficient catalyst for the hydrogenation reaction using low amounts of noble metals.

13.
Environ Sci Pollut Res Int ; 25(23): 22710-22724, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29851018

ABSTRACT

A magnetic adsorbent (MA) was synthesized from wasted iron mud of a groundwater treatment plant using a novel one-step hydrothermal method. The results showed that Fe content of MA was 41.8 wt%, 2.5 times higher than that of iron mud, which was caused by hydrothermal dissolution of non-ferrous impurities under alkaline condition, such as quartz and albite, regardless of addition of ascorbic acid or not. Ferrihydrite was 92.7% in dry iron mud before adding ascorbic acid and gradually decreased to 58.1% by increasing the molar ratio of ascorbic acid to Fe following hydrothermal treatment. The strongest saturation magnetization of 16.29 emu/g was observed in the prepared MA-4 when the ascorbic acid to Fe molar ratio was 1. The highest surface site concentration of 1.31 mmol/g was observed in MA-2 when the ratio was 0.02. The mechanism of hydrothermal conversion of wasted iron mud to MA was reductive dissolution of ferrihydrite to form siderite, which was then reoxidized to maghemite. When 12.5 g/L of MA-2 was applied to treat smelting wastewater, over 99% removal of Cu2+, Zn2+, Pb2+, and Cd2+ was achieved. The major mechanisms of Cu2+ and Zn2+ adsorption by the adsorbent were cationic exchange.


Subject(s)
Ferric Compounds/chemical synthesis , Ferrous Compounds/chemistry , Metals, Heavy/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Adsorption , Copper/analysis , Metallurgy , Zinc/analysis
14.
PLoS One ; 13(2): e0191229, 2018.
Article in English | MEDLINE | ID: mdl-29394262

ABSTRACT

With increasing awareness of reduction of energy and CO2 footprint, more waste is considered recyclable for generating value-added products. Here we reported the negatively-valued iron mud, a waste from groundwater treatment plant, was successfully converted into magnetic adsorbent. Comparing with the conventional calcination method under the high temperature and pressure, the synthesis of the magnetic particles (MPs) by Fe2+/Fe3+ coprecipitation was conducted at environment-friendly condition using ascorbic acid (H2A) as reduction reagent and nitric acid (or acid wastewater) as leaching solution. The MPs with major component of Fe3O4 were synthesized at the molar ratio (called ratio subsequently) of H2A to Fe3+ of iron mud ≥ 0.1; while amorphous ferrihydrite phase was formed at the ratio ≤ 0.05, which were confirmed by vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). With the ratio increased, the crystalline size and the crystallization degree of MPs increased, and thus the Brunauer-Emmett-Teller (BET) surface and the cation-exchange capacity (CEC) decreased. MPs-3 prepared with H2A to Fe3+ ratio of 0.1 demonstrated the highest methylene blue (MB) adsorption of 87.3 mg/g and good magnetic response. The adsorption of MB onto MPs agreed well with the non-linear Langmuir isotherm model and the pseudo-second-order model. Pilot-scale experiment showed that 99% of MB was removed by adding 10 g/L of MPs-3. After five adsorption-desorption cycles, MPs-3 still showed 62% removal efficiency for MB adsorption. When nitric acid was replaced by acid wastewater from a propylene plant, the synthesized MPs-3w showed 3.7 emu/g of saturation magnetization (Ms) and 56.7 mg/g of MB adsorption capacity, 2.8 times of the widely used commercial adsorbent of granular active carbon (GAC). The major mechanism of MPs adsorption for MB was electrostatic attraction and cation exchange. This study synthesized a magnetic adsorbent from the negatively-valued iron mud waste by using an environment-friendly coprecipitation method, which had a potential for treatment of dye wastewater.


Subject(s)
Iron , Methylene Blue , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Ion Exchange , Iron/chemistry , Iron/isolation & purification , Kinetics , Magnetics , Recycling/methods , Static Electricity , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry
15.
Dalton Trans ; 46(28): 9157-9162, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28671230

ABSTRACT

The template effect of chiral organic molecules to aluminophosphate open frameworks was investigated by the syntheses of two layered structures, [R-C8H12N]8[H2O]2·[Al8P12O48H4] and [S-C8H12N]8[H2O]2·[Al8P12O48H4] (denoted as AlPO-CJ72-R and -S), with a mirror symmetric feature. The two structures are obtained separately, which is the first instance in inorganic open-framework materials to our knowledge, by α-methylbenzylamine with homochirality. Single-crystal X-ray diffraction analysis reveals that the structure of either AlPO-CJ72-R or AlPO-CJ72-S crystallizes in the chiral triclinic space group P1, and the existence of AAAA-stacked Al2P3O123- layers made up of alternating AlO4 and PO3([double bond, length as m-dash]O) or PO2([double bond, length as m-dash]O)(OH) tetrahedra to form a 4 × 6 network. Their structures show self-assembled chiral H-bond chains, the chiralities of which are transferred to adjacent helical T-O (T = Al and P) chains. The frameworks are mirror symmetric to each other. The performance of AlPO-CJ72 regarding proton conductivity was tested. It shows an excellent result up to 3.01 × 10-3 S cm-1 (363 K, 98% RH), which might be attributed to the H-bond chains in the structure.

16.
Sci Adv ; 3(5): e1603171, 2017 May.
Article in English | MEDLINE | ID: mdl-28560347

ABSTRACT

Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general "dots-in-zeolites" strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperature and atmosphere. This intriguing TADF phenomenon is due to the fact that nanoconfined space of zeolites can efficiently stabilize the triplet states of CDs, thus enabling the reverse intersystem crossing process for TADF. Meanwhile, zeolite frameworks can also hinder oxygen quenching to present TADF behavior at air atmosphere. This design concept introduces a new perspective to develop materials with unique TADF performance and various novel delayed fluorescence-based applications.

17.
PLoS One ; 10(12): e0142700, 2015.
Article in English | MEDLINE | ID: mdl-26630014

ABSTRACT

The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO4(2-), NO3(-) and Cl(-)); however, CO3(2-) exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions.


Subject(s)
Lanthanum/chemistry , Phosphorus/isolation & purification , Pinus/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Temperature , Thermodynamics
18.
J Water Health ; 13(3): 704-13, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26322756

ABSTRACT

Zinc oxide (ZnO) was synthesized and used to investigate the mechanism of phosphate removal from aqueous solution. ZnO particles were characterized by X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy before and after adsorption. Batch experiments were carried out to investigate the kinetics, isotherms, effects of initial pH and co-existing anions. The adsorption process was rapid and equilibrium was almost reached within 150 min. The adsorption kinetics were described well by a pseudo-second-order equation, and the maximum phosphate adsorption capacity was 163.4 mg/g at 298 K and pH ∼6.2±0.1. Thermodynamic analysis indicated the phosphate adsorption onto ZnO was endothermic and spontaneous. The point of zero charge of ZnO was around 8.4 according to the pH-drift method. Phosphate adsorption capacity reduced with the increasing initial solution pH values. The ligand exchange and Lewis acid-base interaction dominated the adsorption process in the lower and the higher pH range, respectively. Nitrate, sulfate and chloride ions had a negligible effect on phosphate removal, while carbonate displayed significant inhibition behavior.


Subject(s)
Phosphates/isolation & purification , Water Pollutants, Chemical/isolation & purification , Zinc Oxide/chemistry , Adsorption , Hydrogen-Ion Concentration , Phosphates/chemistry , Thermodynamics , Water Pollutants, Chemical/chemistry , Water Purification
19.
Nat Commun ; 6: 8328, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26395233

ABSTRACT

High-throughput computational methods capable of predicting, evaluating and identifying promising synthetic candidates with desired properties are highly appealing to today's scientists. Despite some successes, in silico design of crystalline materials with complex three-dimensionally extended structures remains challenging. Here we demonstrate the application of a new genomic approach to ABC-6 zeolites, a family of industrially important catalysts whose structures are built from the stacking of modular six-ring layers. The sequences of layer stacking, which we deem the genes of this family, determine the structures and the properties of ABC-6 zeolites. By enumerating these gene-like stacking sequences, we have identified 1,127 most realizable new ABC-6 structures out of 78 groups of 84,292 theoretical ones, and experimentally realized 2 of them. Our genomic approach can extract crucial structural information directly from these gene-like stacking sequences, enabling high-throughput identification of synthetic targets with desired properties among a large number of candidate structures.


Subject(s)
Models, Chemical , Zeolites/chemistry , Computer Simulation , Genomics , High-Throughput Screening Assays
20.
Chemosphere ; 101: 34-40, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24296031

ABSTRACT

To the best of our knowledge, little information is available on the combined use of ultrasound (US) and quartz sand (QS) in the removal of disinfection byproducts (DBPs) from drinking water. This study investigates the removal efficiency for 12 DBPs from drinking water by 20 kHz sonolytic treatment, QS adsorption, and their combination. Results indicate that DBPs with logKow≤1.12 could not be sonolysized; for logKow≥1.97, more than 20% removal efficiency was observed, but the removal efficiency was unrelated to logKow. DBPs containing a nitro group are more sensitive to US than those that comprise nitrile, hydrogen, and hydroxyl groups. Among the 12 investigated DBPs, 9 could be adsorbed by QS adsorption. The adsorption efficiency ranged from 12% for 1,1-dichloro-2-propanone to 80% for trichloroacetonitrile. A synergistic effect was found between the US and QS on DBPs removal, and all the 12 DBPs could be effectively removed by the combined use of US and QS. In the presence of US, part of the QS particles were corroded into small particles which play a role in increasing the number of cavitation bubbles and reducing cavitation bubble size and then improve the removal efficiency of DBPs. On the other hand, the presence of US enhances the DBP mass transfer rate to cavitation bubbles and quartz sand. In addition, sonolytic treatment led to a slight decrease of pH, and TOC values decreased under all the three treatment processes.


Subject(s)
Quartz/chemistry , Silicon Dioxide/chemistry , Sound , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Disinfection , Drinking Water , Trihalomethanes/isolation & purification , Trihalomethanes/radiation effects , Water Pollutants, Chemical/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL