Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Headache Pain ; 25(1): 57, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627638

ABSTRACT

BACKGROUND: Rimegepant orally disintegrating tablet (ODT), an oral small-molecule calcitonin gene-related peptide receptor antagonist, is indicated for acute and preventive treatment of migraine in the United States and other countries. Previously, a large clinical trial assessed the efficacy and safety of rimegepant ODT 75 mg for the acute treatment of migraine in adults living in China or South Korea. A post hoc subgroup analysis of this trial was performed to evaluate the efficacy and safety of rimegepant for acute treatment of migraine in adults living in China. METHODS: Eligible participants were ≥ 18 years of age and had a ≥ 1-year history of migraine, with 2 to 8 attacks of moderate or severe pain intensity per month and < 15 headache days per month during the 3 months before screening. Participants self-administered rimegepant ODT 75 mg or matching placebo to treat a single migraine attack of moderate or severe pain intensity. The co-primary endpoints were pain freedom and freedom from the most bothersome symptom (MBS) at 2 h post-dose. Key secondary endpoints included pain relief at 2 h post-dose, ability to function normally at 2 h post-dose, use of rescue medication within 24 h post-dose, and sustained pain freedom from 2 to 24 h and 2 to 48 h post-dose. All p values were nominal. Safety was assessed via treatment-emergent adverse events (TEAEs), electrocardiograms, vital signs, and routine laboratory tests. RESULTS: Overall, 1075 participants (rimegepant, n = 538; placebo, n = 537) were included in the subgroup analysis. Rimegepant was more effective than placebo for the co-primary endpoints of pain freedom (18.2% vs. 10.6%, p = 0.0004) and freedom from the MBS (48.0% vs. 31.8%, p <  0.0001), as well as all key secondary endpoints. The incidence of TEAEs was comparable between the rimegepant (15.2%) and placebo (16.4%) groups. No signal of drug-induced liver injury was observed, and no study drug-related serious TEAEs were reported in the rimegepant group. CONCLUSIONS: A single dose of rimegepant 75 mg rimegepant was effective for the acute treatment of migraine in adults living in China, with safety and tolerability similar to placebo. TRIAL REGISTRATION: Clinicaltrials.gov NCT04574362 Date registered: 2020-10-05.


Subject(s)
Migraine Disorders , Piperidines , Pyridines , Adult , Humans , Migraine Disorders/drug therapy , Migraine Disorders/diagnosis , Pain , Double-Blind Method , Tablets/therapeutic use , China , Treatment Outcome
2.
Genes (Basel) ; 15(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674449

ABSTRACT

The expression of Bacillus thuringiensis (Bt) toxins in transgenic cotton confers resistance to insect pests. However, it has been demonstrated that its effectiveness varies among cotton cultivars and different tissues. In this study, we evaluated the expression of Bt protein in 28 cotton cultivars and selected 7 cultivars that differed in Bt protein expression for transcriptome analysis. Based on their Bt protein expression levels, the selected cultivars were categorized into three groups: H (high Bt protein expression), M (moderate expression), and L (low expression). In total, 342, 318, and 965 differentially expressed genes were detected in the H vs. L, M vs. L, and H vs. M comparison groups, respectively. And three modules significantly associated with Bt protein expression were identified by weighted gene co-expression network analysis. Three hub genes were selected to verify their relationships with Bt protein expression using virus-induced gene silencing (VIGS). Silencing GhM_D11G1176, encoding an MYC transcription factor, was confirmed to significantly decrease the expression of Bt protein. The present findings contribute to an improved understanding of the mechanisms that influence Bt protein expression in transgenic cotton.


Subject(s)
Bacillus thuringiensis , Gene Expression Regulation, Plant , Gossypium , Plants, Genetically Modified , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins/genetics , Bacterial Proteins/genetics , Endotoxins/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Gossypium/genetics , Gossypium/parasitology , Gossypium/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Transcriptome
3.
BMC Plant Biol ; 24(1): 182, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475753

ABSTRACT

BACKGROUND: Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS: When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS: In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.


Subject(s)
Plant Growth Regulators , Transcriptome , Gossypium/genetics , Hydrogen Peroxide/metabolism , Gene Expression Profiling/methods , Metabolome , Flavonoids/metabolism , Gene Expression Regulation, Plant
4.
Article in English | MEDLINE | ID: mdl-38173217

ABSTRACT

OBJECTIVE: Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells. METHODS: An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells. RESULTS: miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells. CONCLUSION: Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.

5.
Plant Sci ; 338: 111899, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865208

ABSTRACT

An exposure to extremely saline conditions can lead to significant oxidative damage in plants. Flavonoids, which are potent antioxidants, are critical for the scavenging of reactive oxygen species caused by abiotic stress. In the present study, the cotton F-box gene GhFB15 was isolated and characterized. The expression of GhFB15 was rapidly induced by salt as well as by exogenous hormones (ETH, MeJA, ABA, and GA). An analysis of subcellular localization revealed GhFB15 is mainly distributed in nuclei. Overexpression of GhFB15 adversely affected the salt tolerance of transgenic Arabidopsis plants as evidenced by decreased seed germination and seedling growth, whereas the silencing of GhFB15 improved the salt tolerance of cotton plants. Furthermore, we analyzed the gene expression profiles of VIGS-GhFB15 and TRV:00 plants. Many of the differentially expressed genes were associated with the flavonoid biosynthesis pathway. Moreover, lower flavonoid contents and higher levels of H2O2 and O2- were observed in the transgenic Arabidopsis plants. Conversely, the VIGS-GhFB15 cotton plants had relatively higher flavonoid contents, but lower H2O2 and O2- levels. These results suggest that GhFB15 negatively regulates salt tolerance, and silencing GhFB15 results in increased flavonoid accumulation and improved ROS scavenging.


Subject(s)
Arabidopsis , F-Box Proteins , Arabidopsis/metabolism , Salinity , F-Box Proteins/genetics , Hydrogen Peroxide/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Theor Appl Genet ; 136(9): 189, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582982

ABSTRACT

KEY MESSAGE: An LRR-RLK gene causing interspecific hybrid breakdown between Gossypium. anomalum and G. hirsutum was identified by deploying a map-based cloning strategy. The self-destructing symptoms of hybrid incompatibility in most cases are attributed to autoimmunity. The cloning of genes responsible for hybrid incompatibility in cotton is helpful to clarify the mechanisms underlying hybrid incompatibility and can break the barriers in distant hybridization. In this study, a temperature-dependent lethality was identified in CSSL11-9 (chromosome segment substitution line) with Gossypium anomalum chromosome segment on chromosome A11. Transcriptome analysis showed the differentially expressed genes related to autoimmune responses were highly enriched, suggesting that expression of CSSL11-9 plant lethal gene activated autoimmunity in the absence of any pathogen or external stimulus, inducing programmed cell death (PCD) and causing a lethal phenotype. The lethal phenotype was controlled by a pair of recessive genes and then fine mapped between JAAS3191-JAAS3050 interval, which covered 63.87 kb in G. hirsutum genome and 98.66 kb in G. anomalum. We demonstrated that an LRR-RLK gene designated as hybrid breakdown 1 (GoanoHBD1) was the causal gene underlying this locus for interspecific hybrid incompatibility between G. anomalum and G. hirsutum. Silencing this LRR-RLK gene could restore CSSL11-9 plants from a lethal to a normal phenotype. Our findings provide new insights into reproductive isolation and may benefit cotton breeding.


Subject(s)
Gossypium , Plant Breeding , Gossypium/genetics , Genes, Recessive , Phenotype , Genes, Plant
7.
Lancet Neurol ; 22(6): 476-484, 2023 06.
Article in English | MEDLINE | ID: mdl-37210098

ABSTRACT

BACKGROUND: No acute treatments targeting calcitonin gene-related peptide (CGRP) have been approved for use in China or South Korea. We aimed to compare the efficacy and safety of rimegepant-an orally administered small molecule CGRP antagonist-with placebo in the acute treatment of migraine among adults in these countries. METHODS: This double-blind, randomised, placebo-controlled, multicentre phase 3 trial was done at 86 outpatient clinics at hospitals and academic medical centres (73 in China and 13 in South Korea). Participants were adults (≥18 years) with at least a 1-year history of migraine who had two to eight moderate or severe attacks per month and fewer than 15 headache days per month within the 3 months before the screening visit. Participants were randomly assigned (1:1) to 75 mg rimegepant or placebo to treat a single migraine attack of moderate or severe pain intensity. Randomisation was stratified by the use of preventive medication and by country. The allocation sequence was generated and implemented by study personnel using an interactive web-response system accessed online from each study centre. All participants, investigators, and the sponsor were masked to treatment assignment. The coprimary endpoints of freedom from pain and freedom from the most bothersome symptom (nausea, phonophobia, or photophobia) 2 h after dosing were assessed in the modified intention-to-treat (mITT) population (randomly assigned participants who took study medication for a migraine attack of moderate or severe pain intensity, and provided at least one efficacy datapoint after treatment) using Cochran-Mantel Haenszel tests. Safety was assessed in all participants who received rimegepant or placebo. The study is registered with ClinicalTrials.gov, number NCT04574362, and is completed. FINDINGS: 1431 participants were randomly assigned (716 [50%] to rimegepant and 715 [50%] to placebo). 668 (93%) participants in the rimegepant group and 674 (94%) participants in the placebo group received treatment. 1340 participants were included in the mITT analysis (666 [93%] in the rimegepant group and 674 [94%] in the placebo group). 2 h after dosing, rimegepant was superior to placebo for pain freedom (132 [20%] of 666 vs 72 [11%] of 674, risk difference 9·2, 95% CI 5·4-13·0; p<0·0001) and freedom from the most bothersome symptom (336 [50%] of 666 participants vs 241 [36%] of 674 participants, 14·8, 9·6-20·0; p<0·0001). The most common (≥1%) adverse events were protein in urine (8 [1%] of 668 participants in the rimepegant group vs 7 [1%] of 674 participants in the placebo group), nausea (7 [1%] of 668 vs 18 [3%] of 674), and urinary tract infection (5 [1%] of 668 vs 8 [1%] of 674). There were no rimegepant-related serious adverse events. INTERPRETATION: Among adults living in China or South Korea, a single dose of 75 mg rimegepant was effective for the acute treatment of migraine. Safety and tolerability were similar to placebo. Our findings suggest that rimegepant might be a useful new addition to the range of medications for the acute treatment of migraine in China and South Korea, but further studies are needed to support long-term efficacy and safety and to compare rimegepant with other medications for the acute treatment of migraine in this population. FUNDING: BioShin Limited. TRANSLATIONS: For the Chinese and Korean translations of the abstract see Supplementary Materials section.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Adult , Humans , Migraine Disorders/diagnosis , Nausea , Pain , Double-Blind Method , Tablets/therapeutic use , China , Treatment Outcome
8.
Front Plant Sci ; 14: 1056662, 2023.
Article in English | MEDLINE | ID: mdl-36875607

ABSTRACT

Carbon ion beam (CIB) irradiation is a powerful way to create mutations in animals, plants, and microbes. Research on the mutagenic effects and molecular mechanisms of radiation is an important and multidisciplinary issue. However, the effect of carbon ion radiation on cotton is uncertain. In this study, five different upland cotton varieties and five CIB doses were used to identify the suitable irradiation dose for cotton. Three mutagenized progeny cotton lines from the wild-type Ji172 were re-sequenced. The effect of half-lethal dose on mutation induction indicated that 200 Gy with LETmax of 226.9 KeV/µm was the most effective heavy-ion dose for upland cotton and a total of 2,959-4,049 single-base substitutions (SBSs) and 610-947 insertion-deletion polymorphisms (InDels) were identified among the three mutants by resequencing. The ratio of transition to transversion in the three mutants ranged from 2.16 to 2.24. Among transversion events, G:C>C:G was significantly less common than three other types of mutations (A:T>C:G, A:T>T:A, and G:C>T:A). The proportions of six types of mutations were very similar in each mutant. The distributions of identified SBSs and InDels were similar with unevenly distributed across the genome and chromosomes. Some chromosomes had significantly more SBSs than others, and there were "hotspot" mutation regions at the ends of chromosomes. Overall, our study revealed a profile of cotton mutations caused by CIB irradiation, and these data could provide valuable information for cotton mutation breeding.

9.
Plant Dis ; 107(10): 3198-3210, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36890127

ABSTRACT

Verticillium dahliae is a fungal pathogen that causes Verticillium wilt (VW), which seriously reduces the yield of cotton owing to biological stress. The mechanism underlying the resistance of cotton to VW is highly complex, and the resistance breeding of cotton is consequently limited by the lack of in-depth research. Using quantitative trait loci (QTL) mapping, we previously identified a novel cytochrome P450 (CYP) gene on chromosome D4 of Gossypium barbadense that is associated with resistance to the nondefoliated strain of V. dahliae. In this study, the CYP gene on chromosome D4 was cloned together with its homologous gene on chromosome A4 and were denoted as GbCYP72A1d and GbCYP72A1a, respectively, according to their genomic location and protein subfamily classification. The two GbCYP72A1 genes were induced by V. dahliae and phytohormone treatment, and the findings revealed that the VW resistance of the lines with silenced GbCYP72A1 genes decreased significantly. Transcriptome sequencing and pathway enrichment analyses revealed that the GbCYP72A1 genes primarily affected disease resistance via the plant hormone signal transduction, plant-pathogen interaction, and mitogen-activated protein kinase (MAPK) signaling pathways. Interestingly, the findings revealed that although GbCYP72A1d and GbCYP72A1a had high sequence similarity and both genes enhanced the disease resistance of transgenic Arabidopsis, there was a difference between their disease resistance abilities. Protein structure analysis revealed that this difference was potentially attributed to the presence of a synaptic structure in the GbCYP72A1d protein. Altogether, the findings suggested that the GbCYP72A1 genes play an important role in plant response and resistance to VW.


Subject(s)
Verticillium , Verticillium/physiology , Disease Resistance/genetics , Plant Breeding , Quantitative Trait Loci , Gossypium/genetics , Gossypium/microbiology , Signal Transduction
10.
J Pain ; 24(7): 1163-1180, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36641029

ABSTRACT

Systemic lupus erythematosus (SLE) is an unpredictable autoimmune disease where the body's immune system mistakenly attacks healthy tissues in many parts of the body. Chronic pain is one of the most frequently reported symptoms among SLE patients. We previously reported that MRL lupus prone (MRL/lpr) mice develop hypersensitivity to mechanical and heat stimulation. In the present study, we found that the spinal protease-activated receptor-1(PAR1) plays an important role in the genesis of chronic pain in MRL/lpr mice. Female MRL/lpr mice with chronic pain had activation of astrocytes, over-expression of thrombin and PAR1, enhanced glutamatergic synaptic activity, as well as suppressed activity of adenosine monophosphate-activated protein kinase (AMPK) and glial glutamate transport function in the spinal cord. Intrathecal injection of either the PAR1 antagonist, or AMPK activator attenuated heat hyperalgesia and mechanical allodynia in MRL/lpr mice. Furthermore, we also identified that the enhanced glutamatergic synaptic activity and suppressed activity of glial glutamate transporters in the spinal dorsal horn of MRL/lpr mice are caused by activation of the PAR1 and suppression of AMPK signaling pathways. These findings suggest that targeting the PAR1 and AMPK signaling pathways in the spinal cord may be a useful approach for treating chronic pain caused by SLE. PERSPECTIVE: Our study provides evidence suggesting activation of PAR1 and suppression of AMPK in the spinal cord induces thermal hyperalgesia and mechanical allodynia in a lupus mouse model. Targeting signaling pathways regulating the PAR1 and AMPK could potentially provide a novel approach to the management of chronic pain caused by SLE.


Subject(s)
Chronic Pain , Lupus Erythematosus, Systemic , Mice , Female , Animals , Chronic Pain/etiology , Chronic Pain/metabolism , Hyperalgesia/etiology , Hyperalgesia/metabolism , Receptor, PAR-1/metabolism , AMP-Activated Protein Kinases/metabolism , Amino Acid Transport System X-AG/metabolism , Lupus Erythematosus, Systemic/metabolism , Spinal Cord Dorsal Horn/metabolism , Glutamates/metabolism
11.
Plants (Basel) ; 11(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145743

ABSTRACT

Verticillium wilt (VW) is a soil-borne fungal disease caused by Verticillium dahliae Kleb, which leads to serious damage to cotton production annually in the world. In our previous study, a transmembrane protein 214 protein (TMEM214) gene associated with VW resistance was map-based cloned from Gossypium barbadense (G. barbadense). TMEM214 proteins are a kind of transmembrane protein, but their function in plants is rarely studied. To reveal the function of TMEM214s in VW resistance, all six TMEM214s were cloned from G. barbadense in this study. These genes were named as GbTMEM214-1_A/D, GbTMEM214-4_A/D and GbTMEM214-7_A/D, according to their location on the chromosomes. The encoded proteins are all located on the cell membrane. TMEM214 genes were all induced with Verticillium dahliae inoculation and showed significant differences between resistant and susceptible varieties, but the expression patterns of GbTMEM214s under different hormone treatments were significantly different. Virus-induced gene silencing analysis showed the resistance to VW of GbTMEM214s-silenced lines decreased significantly, which further proves the important role of GbTMEM214s in the resistance to Verticillium dahliae. Our study provides an insight into the involvement of GbTMEM214s in VW resistance, which was helpful to better understand the disease-resistance mechanism of plants.

12.
Plant Commun ; 3(5): 100350, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35733334

ABSTRACT

Crop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Gossypium anomalum, a stress-tolerant wild cotton species. We provided a strategy to discover and transfer agronomically valuable genes from wild diploid species to tetraploid cotton cultivars. With a (Gossypium hirsutum × G. anomalum)2 hexaploid as a bridge parent, we developed a set of 74 diploid chromosome segment substitution lines (CSSLs) of the wild cotton species G. anomalum in the G. hirsutum background. This set of CSSLs included 70 homozygous substitutions and four heterozygous substitutions, and it collectively contained about 72.22% of the G. anomalum genome. Twenty-four quantitative trait loci associated with plant height, yield, and fiber qualities were detected on 15 substitution segments. Integrating the reference genome with agronomic trait evaluation of the CSSLs enabled location and cloning of two G. anomalum genes that encode peroxiredoxin and putative callose synthase 8, respectively, conferring drought tolerance and improving fiber strength. We have demonstrated the power of a high-quality wild-species reference genome for identifying agronomically valuable alleles to facilitate interspecific introgression breeding in crops.


Subject(s)
Cotton Fiber , Gossypium , Chromosomes, Plant/genetics , Crosses, Genetic , Gossypium/genetics , Plant Breeding
13.
Chemosphere ; 292: 133419, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34982966

ABSTRACT

Odor problems are challenging issues in water treatment. Advanced oxidation has a significant degradation effect on these odors; however, some issues, such as oxidant residues and disinfection byproducts, exist in the use of advanced oxidation in actual water treatment. Because of the above issues, a combined advanced oxidation process has emerged-the UV/H2O2 -biological activated carbon (BAC) process can play a strong oxidizing role in advanced oxidation and uses the physical adsorption and biological effects of activated carbon. However, there have been few studies on the odor degradation mechanism and characteristics of activated carbon biofilms in actual water treatment. This paper systematically studied the organic and odor substances removal effects and mechanism of a pilot combined UV/H2O2-BAC process. The results showed that UV/H2O2-BAC technology had a good removal effect on odor substances under long-term stable operation. The concentrations of geosmin (GSM) and 2-methylisoborneol (2-MIB) after systemic treatment were below 5 ng/L. The removal rates of DOC, UV254 and H2O2 by the combined process were 53.60%, 73.08% and 60.20%, respectively. The results of full-scan determination of GSM and 2-MIB degradation by gas chromatography-mass spectrometry (GC-MS) were consistent with those of front-track analysis. The diversity, richness and evenness of microorganisms in the lower activated carbon layer were higher than those in the middle and upper activated carbon layers. The greater the difference in the carbon layer height was, the greater the difference in the biological community structure.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Charcoal , Hydrogen Peroxide , Odorants/analysis , Water Pollutants, Chemical/analysis
14.
Int J Genomics ; 2022: 2942633, 2022.
Article in English | MEDLINE | ID: mdl-36620092

ABSTRACT

Objective: Spinal cord ischemia-reperfusion injury (SCIRI) can cause a pathological state of irreversible delayed death of neurons in the spinal cord tissue and a range of complications, such as spinal cord dysfunction and motor function impairment. This study aimed to determine whether the long-stranded non-coding ribonucleic acid (lncRNA), myocardial infarction-associated transcript (MIAT), could upregulate neuronal growth regulator 1 (NEGR1) by competing for miR-150-5p as a competitive endogenous RNA in a rat SCIRI model. Methods: The MIAT knockdown vector or the corresponding blank vector was injected into the spinal cord of healthy sprague Dawley (SD) rats. Administration of the MIAT knockdown vector led to the establishment of the SCIRI rat model. Basso, Beattie & Bresnahan locomotor rating scale (BBB) assessment of hind limb motion. Pathological changes in the spinal cord were observed via hematoxylin and eosin staining and eosin staining. Quantitative polymerase chain reaction was performed to determine the expression levels of the candidate microRNAs and predicted candidate genes, and the relationship between them. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining was used to detect apoptosis in the spinal cord tissue of rats in each group. Western blotting was performed to determine the expression of the apoptosis-related proteins, caspase-9, caspase-3, and BCL2-Associated X (Bax)/B-cell lymphoma-2 (Bcl-2). The luciferase reporter gene was used to assess the interaction among the lncRNA, MIAT, and miR-150-5, and the interaction between miR-150-5 and NEGR1. Results: The sh-lncRNA, MIAT, improved exercise status, and pathological changes in the spinal cord of SCIRI rats, inhibited apoptosis, increased the expression of miR-150-5p, and reduced the expression of NEGR1. Compared with mimics-NC, the transfection of miR-150-5p significantly decreased the relative fluorescence activity ratio of MIAT 3'-untranslated region (3'-UTR) wild-type Human embryonic kidney cells 293 (HEK-293 cells). Compared with mimics-negative control (NC), the transfection of miR-150-5p significantly decreased the relative fluorescence activity ratio of NEGR1 3'-UTR wild-type HEK-293 cells. Conclusion: MIAT can affect the symptoms of SCIRI in rats. Furthermore, as a competitive endogenous RNA, MIAT upregulates NEGR1 by competing with miR-150-5p in SCIRI rats.

15.
Acta Histochem ; 123(8): 151819, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34844154

ABSTRACT

OBJECTIVE: To investigate the effect and potential mechanism of quercetin on inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells. MATERIALS AND METHODS: H9C2 cells were obtained from the Shanghai Institutes for Biological Sciences, Chinese Academy of Science, and randomly divided into six groups: control, model, PVT1 overexpression (OV), quercetin, OV + quercetin, and NAC groups. The CCK-8 assay was performed to examine cell proliferation. Flow cytometry was used to examine cell apoptosis, cell membrane potential, and ROS levels. The expression of endothelial nitric oxide synthase (eNOS), malondialdehyde (MDA), and superoxide dismutase (SOD) was measured by ELISA and a Biochemical kit. Western blotting was used to determine the levels of p-DRP1 (s637), MFN2, NF-kB, p-NF-kB, IkB, and p-IkB. IL-6, IL-10, TNF-α, and IL-1ß mRNA expression was examined by RT-PCR. Electron microscopy was used to observe the structure of mitochondria in H9C2 cells. RESULTS: MDA, p-NF-κB, p-IKB, IL-6, IL-1ß, and TNF-α expression levels, and the cell apoptosis rate were significantly higher in the model group than in the control group (P < 0.05). In contrast, the cell proliferation rate and IL-10, SOD, eNOS, and ATP levels were significantly lower in the model group (P < 0.05). Moreover, MDA expression was significantly lower in the OV, quercetin, quercetin + OV, and NAC groups than in the model group (P < 0.05), while SOD, eNOS, and ATP levels were higher. The electron microscopy results showed that PVT1 overexpression or quercetin treatment could inhibit inflammation-induced mitochondrial fission and promote mitochondrial fusion. CONCLUSION: Quercetin promotes the proliferation of H9C2 cells, while inhibiting inflammation, oxidative stress, and cell apoptosis, and alleviating the structural and functional dysfunction of mitochondria. These effects are achieved by promoting PVT1 expression.


Subject(s)
Apoptosis/drug effects , Gene Expression Regulation/drug effects , Mitochondria, Heart/metabolism , Oxidative Stress/drug effects , Quercetin/pharmacology , RNA, Long Noncoding/biosynthesis , Cell Line , Humans , Inflammation/metabolism
16.
Article in English | MEDLINE | ID: mdl-34457029

ABSTRACT

Reperfusion of blood flow during ischemic myocardium resuscitation induces ischemia/reperfusion (I/R) injury. Oxidative stress has been identified as a major cause in this process. Quercetin (QCT) is a member of the flavonoid family that exerts antioxidant effects. The aim of this study was to investigate the preventive effects of QCT on I/R injury and its underlying mechanism. To this end, H9c2 cardiomyocytes were treated with different concentrations of QCT (10, 20, and 40 µM) and subsequently subjected to oxygen-glucose deprivation/reperfusion (OGD/R) administration. The results indicated that OGD/R-induced oxidative stress, apoptosis, and mitochondrial dysfunction in H9c2 cardiomyocytes were aggravated following 40 µM QCT treatment and alleviated following the administration of 10 and 20 µM QCT prior to OGD/R treatment. In addition, OGD/R treatment inactivated ERK1/2 signaling activation. The effect was mitigated using 10 and 20 µM QCT prior to OGD/R treatment. In conclusion, these results suggested that low concentrations of QCT might alleviate I/R injury by suppressing oxidative stress and improving mitochondrial function through the regulation of ERK1/2-DRP1 signaling, providing a potential candidate for I/R injury prevention.

17.
J Med Virol ; 92(11): 2573-2581, 2020 11.
Article in English | MEDLINE | ID: mdl-32458459

ABSTRACT

This retrospective study was designed to explore whether neutrophil to lymphocyte ratio (NLR) is a prognostic factor in patients with coronavirus disease 2019 (COVID-19). A cohort of patients with COVID-19 admitted to the Tongren Hospital of Wuhan University from 11 January 2020 to 3 March 2020 was retrospectively analyzed. Patients with hematologic malignancy were excluded. The NLR was calculated by dividing the neutrophil count by the lymphocyte count. NLR values were measured at the time of admission. The primary outcome was all-cause in-hospital mortality. A multivariate logistic analysis was performed. A total of 1004 patients with COVID-19 were included in this study. The mortality rate was 4.0% (40 cases). The median age of nonsurvivors (68 years) was significantly older than survivors (62 years). Male sex was more predominant in nonsurvival group (27; 67.5%) than in the survival group (466; 48.3%). NLR value of nonsurvival group (median: 49.06; interquartile range [IQR]: 25.71-69.70) was higher than that of survival group (median: 4.11; IQR: 2.44-8.12; P < .001). In multivariate logistic regression analysis, after adjusting for confounding factors, NLR more than 11.75 was significantly correlated with all-cause in-hospital mortality (odds ratio = 44.351; 95% confidence interval = 4.627-425.088). These results suggest that the NLR at hospital admission is associated with in-hospital mortality among patients with COVID-19. Therefore, the NLR appears to be a significant prognostic biomarker of outcomes in critically ill patients with COVID-19. However, further investigation is needed to validate this relationship with data collected prospectively.


Subject(s)
COVID-19/diagnosis , Hospital Mortality , Lymphocytes/cytology , Neutrophils/cytology , Age Factors , Aged , Biomarkers/blood , COVID-19/mortality , Critical Illness , Cross-Sectional Studies , Female , Humans , Leukocyte Count , Male , Middle Aged , Multivariate Analysis , Odds Ratio , Prognosis , ROC Curve , Retrospective Studies , Sex Factors
18.
J Clin Pharm Ther ; 45(4): 609-616, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32449224

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Since the December 2019 discovery of several cases of coronavirus disease 2019 (COVID-19) in Wuhan, China, the infection has spread worldwide. Our aim is to report on the clinical characteristics, treatments and prognoses of COVID-19. METHODS: This was a retrospective, single-centre, case series of 136 patients who were diagnosed with COVID-19 at Wuhan Third Hospital in Wuhan, China, between 28 January 2020 and 12 February 2020. The clinical characteristics, laboratory tests, treatment features and prognoses were summarized. RESULTS AND DISCUSSION: The 136 patients were divided into a moderate (M) group (n = 103, 75.7%) and a severe and critical (SC) group (n = 33, 24.3%). There were significant differences in the incidences of concomitant chronic medical illnesses (eg, hypertension, diabetes and cardiovascular disease), fever, dry cough and dyspnoea among the two groups (P < .05). Compared with those in the M group, lymphocyte count (LYM) decreased significantly in the SC group, while the serum levels of C-reactive protein (CRP), procalcitonin (PCT), creatinine (Cre), D-dimer, lactic dehydrogenase (LDH), myoglobin (MB) and troponin I (cTnl) increased significantly in the SC group (P < .05). The main therapeutic drugs were antivirals, antibiotics, glucocorticoids, immunomodulators, traditional Chinese medicine preparations and symptomatic support drugs. There were significant differences in the incidences of shock, myocardial injury, acute respiratory distress syndrome (ARDS) and renal injury among the two groups (P < .05). Among the 136 patients, 99 (72.7%) were cured, 14 (10.3%) were transferred to other hospital and 23 (16.9%) died. WHAT IS NEW AND CONCLUSION: Elderly patients with chronic diseases are more likely to develop severe or critical COVID-19 with multiple organ damage or systemic injuries. The improvement of LYM and CRP may be associated with the prognoses of COVID-19. The combined use of three or more antiviral drugs is to be avoided. The combination of broad-spectrum antibacterial drugs is not recommended and the risk of drug-induced liver injury should be monitored. Throughout a patient's hospitalization, their treatment plan should be evaluated and adjusted according to their vital signs, clinical symptoms, laboratory tests and imaging changes. Patients should receive effective psychological counselling.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adult , Age Factors , Aged , Antiviral Agents/therapeutic use , Biomarkers/blood , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Female , Glucocorticoids/therapeutic use , Humans , Immunologic Factors/therapeutic use , Lymphocyte Count , Male , Medicine, Chinese Traditional , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Prognosis , Retrospective Studies , Risk Factors , Treatment Outcome
19.
Environ Sci Pollut Res Int ; 27(21): 26079-26090, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32358745

ABSTRACT

Humic acid (HA) in water is the main precursor of disinfection by-products in the chlorination process of drinking water. In this study, an ultraviolet/persulfate (UV/PS) process, in a laboratory-scale system, is successful in the degradation of HA. The results showed that HA was significantly degraded (UV254 removal rate of ~ 89%) and partially mineralized (~ 62.5%) by UV/PS treatment at a PS dose of 0.4 mM, pH of 7.12, and UV irradiation time of 160 min. The trihalomethane formation potential (THMFP) was also significantly reduced (THMFP reduction of ~ 85.4%). A strong linear relationship was observed between UV254 and dissolved organic carbon. The removal rate of HA at low pH was better than that at high pH conditions, and the inhibition by Cl- slowed down after an initial increase, and the inhibition was weaker than HCO3-. By analyzing the fluorescence spectrum of two humic-like substances, the fluorescent compounds C1 and C2 in HA were significantly degraded, and the change in C1 and C2 concentration was correlated with the decrease of THMFP. The degradation of different fractions of natural organic matter in real-world water samples indicated that UV/PS has significant potential to decrease HA in water.


Subject(s)
Water Pollutants, Chemical/analysis , Water Purification , Humic Substances/analysis , Oxidation-Reduction , Trihalomethanes/analysis , Ultraviolet Rays
20.
ACS Med Chem Lett ; 10(6): 966-971, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31223456

ABSTRACT

Malaria is caused by infection from the Plasmodium parasite and kills hundreds of thousands of people every year. Emergence of new drug resistant strains of Plasmodium demands identification of new drugs with novel chemotypes and mechanisms of action. As a follow up to our evaluation of 4-aryl-N-benzylpyrrolidine-3-carboxamides as novel pyrrolidine-based antimalarial agents, we describe herein the structure-activity relationships of the reversed amide homologues 2-aryl-N-(4-arylpyrrolidin-3-yl)acetamides. Unlike their carboxamide homologues, acetamide pyrrolidines do not require a third chiral center to be potent inhibitors of P. falciparum and have good pharmacokinetic properties and improved oral efficacy in a mouse model of malaria. Compound (-)-32a (CWHM-1552) has an in vitro IC50 of 51 nM in the P. falciparum 3D7 assay and an in vivo ED90 of <10 mg/kg/day and ED99 of 30 mg/kg/day in a murine P. chabaudi model. Remarkably, the absolute stereochemical preference for this acetamide series (3S,4R) is opposite of that determined for the homologous carboxamide series. Lead compounds for this class have modest affinities for the hERG channel and inhibit CYP 3A4. Additional optimization is needed in order to eliminate these undesired properties from this otherwise promising series of antimalarial compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...