Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Am Chem Soc ; 146(30): 21017-21024, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39029108

ABSTRACT

The devastating COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made society acutely aware of the urgency in developing effective techniques to timely monitor the outbreak of previously unknown viral species as well as their mutants, which could be even more lethal and/or contagious. Here, we report a fluorogenic sensor array consisting of peptides truncated from the binding domain of human angiotensin-converting enzyme 2 (hACE2) for SARS-CoV-2. A set of five fluorescently tagged peptides were used to construct the senor array in the presence of different low-dimensional quenching materials. When orthogonally incubated with the wild-type SARS-CoV-2 and its variants of concern (VOCs), the fluorescence of each peptide probe was specifically recovered, and the different recovery rates provide a "fingerprint" characteristic of each viral strain. This, in turn, allows them to be differentiated from each other using principal component analysis. Interestingly, the classification result from our sensor array agrees well with the evolutionary relationship similarity of the VOCs. This study offers insight into the development of effective sensing tools for highly contagious viruses and their mutants based on rationally truncating peptide ligands from human receptors.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Fluorescent Dyes , Peptides , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/isolation & purification , Humans , Peptides/chemistry , Peptides/metabolism , Fluorescent Dyes/chemistry , COVID-19/virology , COVID-19/diagnosis , Biosensing Techniques/methods
3.
Diagn Microbiol Infect Dis ; 109(4): 116374, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805857

ABSTRACT

Whipple's disease is a chronic systemic infectious disease that mainly affects the gastrointestinal tract. In some cases, Tropheryma whipplei can cause infection at the implant site or even throughout the body. In this study, we collected alveolar lavage fluid samples from patients with Tropheryma whipplei from 2020 to 2022, and retrospectively analyzed the clinical data of Tropheryma whipplei positive patients. Patient's past history, clinical manifestations, laboratory examinations, chest CT findings, treatment, and prognosis were recorded. 16 BALFs (70/1725, 4.0 %) from 16 patients were positive for Tropheryma whipplei. 8 patients were male with an average age of 50 years. The main clinical symptoms of patients included fever (9/16), cough (7/16), dyspnea (7/16), and expectoration (5/16), but neurological symptoms and arthralgia were rare. Cardiovascular and cerebrovascular diseases were the most common comorbidity (n=8). The main laboratory characteristics of the patient are red blood cell count, hemoglobin, total protein and albumin below normal levels (11/16), and/or creatinine above normal levels(14/16). Most chest computed tomography mainly show focal or patchy heterogeneous infection (n=5) and pleural effusion (n=8). Among the 6 samples, Tropheryma whipplei was the sole agent, and Klebsiella pneumoniae was the most common detected other pathogens. Metagenomic next-generation sequencing technology has improved the detection rate and attention of Tropheryma whipplei. Further research is needed to distinguish whether Tropheryma whipplei present in respiratory samples is a pathogen or an innocent bystander.


Subject(s)
Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Metagenomics , Tropheryma , Whipple Disease , Humans , Male , Middle Aged , Bronchoalveolar Lavage Fluid/microbiology , Female , Tropheryma/genetics , Tropheryma/isolation & purification , Retrospective Studies , Whipple Disease/diagnosis , Whipple Disease/microbiology , Metagenomics/methods , Aged , Adult
4.
Huan Jing Ke Xue ; 45(5): 2848-2858, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629547

ABSTRACT

The application of biomarkers to study the molecular composition of soil organic matter (SOM) can be used to analyze the source and degradation of SOM and reveal the stability mechanism of soil organic carbon (SOC) at the molecular level. In order to further clarify the effects of different land use patterns (farmland, grassland, and forest) on the molecular composition of SOM, the changes in molecular composition of organic matter (free lipids, cutin, suberin, and lignin) on a global scale were studied using a meta-analysis method. The results showed that there were significant differences in the molecular composition of organic matter under different land use patterns. The contents of free lipids (n-alkanes, n-alkanols, n-alkanoic acids, and cyclic lipids), cutin, and lignin phenols in forest soil were significantly higher than those in grassland and farmland. There was no significant difference in the content of suberin between grassland and forest soil. The ratio of suberin to cutin in grassland was the highest, with an average of 2.96, and the averages of farmland and forest were 1.68 and 2.21, respectively. The ratio of syringic acid to syringaldehyde (Ad/Al)S and the ratio of vanillic acid to vanillin (Ad/Al)V of farmland soil were the largest, which were 1.25 and 1.58, respectively, and were significantly higher than those in grassland (0.46 and 0.69) and forest (0.78 and 0.7). The results of correlation analysis showed that in farmland soil, suberin was significantly correlated with mean annual precipitation (MAP) and clay; cutin was significantly correlated with clay; and lignin was significantly correlated with mean annual temperature (MAT), MAP, sand, and bulk density. In grassland soil, total free lipids were significantly correlated with MAP and bulk density; suberin and cutin were significantly correlated with MAT and MAP; and lignin was significantly correlated with MAP, pH, sand, and bulk density. However, only lignin was significantly correlated with MAP and sand in forest soils. Overall, the contents of SOC and molecular components in forest soil were higher under the three land use practices, and the contribution of plant roots to SOM in grassland soil was greater. In farmland soil, the degradation of lignin was accelerated due to human farming activities. Future research should focus on the regulation of soil physicochemical properties and climatic conditions on the molecular composition of SOM.

5.
J Orthop Surg Res ; 19(1): 28, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172900

ABSTRACT

OBJECTIVE: To investigate the effectiveness of focused extracorporeal shock wave therapy (FESWT) in treating postpartum sacroiliac joint (SIJ) dysfunction. METHODS: A total of 90 patients with SIJ dysfunction were included and randomly assigned to FESWT, manual therapy (MT), or combination therapy (CT) groups. Pain intensity and Oswestry Disability Index (ODI) score were measured upon admission, after 1 and 2 weeks of treatments. The treatment efficacy and adverse events of each group were also assessed. RESULTS: There were no significant differences among three groups regarding clinical data, pain intensity, and ODI score on admission (all P > 0.05). After 1 week of treatment, FESWT exhibited similar pain intensity and lower ODI score (P < 0.001) compared to MT. After 2 weeks of treatment, the pain and ODI in FESWT were similar with MT. The pain in CT was lower than MT after 1 week, but lower than FESWT after 2 weeks. Furthermore, we identified interaction effects between treatment method and duration in relation to pain intensity (Fgroup*time = 5.352, P = 0.001) and ODI score (Fgroup*time = 5.902, P < 0.001). FESWT group exhibited the highest improvement rate of 66.7%, while CT group achieved the highest cure rate of 73.3%. No adverse events were observed in any of the patients during 2 months follow-up period. CONCLUSIONS: Compared to MT, FESWT mainly reduced the ODI score rather than pain after 1 week of treatment. After 2 weeks, the effect of FESWT in relieving the pain was inferior to the MT.


Subject(s)
Joint Diseases , Low Back Pain , Musculoskeletal Manipulations , Female , Humans , Low Back Pain/therapy , Musculoskeletal Manipulations/methods , Prospective Studies , Sacroiliac Joint , Treatment Outcome
6.
Int Immunopharmacol ; 128: 111546, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38237224

ABSTRACT

Acute liver injury (ALI) is a common clinical disease caused by sepsis, metabolic syndrome, hepatitis virus. Macrophage plays an important role in the development of ALI, which is characterized by polarization and inflammatory regulation. The polarization process of macrophages is related to membrane binding proteins and adaptors. Protein 4.1R acts as an adaptor, linking membrane proteins to the cytoskeleton, and is involved in cell activation and cytokine secretion. However, whether protein 4.1R is involved in regulating macrophage polarization and inflammation-induced liver injury remains unknown. In this study, protein 4.1R is identified with the special effect on macrophage M1 polarization. And it is further demonstrated that protein 4.1R deficiency significantly enhance glycolytic metabolism. Mechanistically, the regulation of protein 4.1R on pyruvate kinase M2 (PKM2) plays a key role in glycolysis metabolism. In addition, we found that protein 4.1R directly interacts with toll-like receptor 4 (TLR4), inhibits the activation of the AKT/HIF-1α signaling pathway. In conclusion, protein 4.1R targets HIF-1α mediated glycolysis regulates M1 macrophage polarization, indicating that protein 4.1R is a candidate for regulating macrophage mediated inflammatory response. In conclusion, we have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy. We have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Sepsis , Mice , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Glycolysis , Sepsis/metabolism
7.
Angew Chem Int Ed Engl ; 63(7): e202316885, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38135661

ABSTRACT

Aromatic metalla-annulenes are important aromatic compounds, research into which has been mainly concentrated on metal-benzenes and their lower homologues. Reports on their superior homologs are rare, and this has greatly limited the systematic study of their properties. In this work, a series of osma-dehydro[11]annulenes with good air and thermal stability were prepared in high yields through a simple [10+1] strategy, by incorporating a metal fragment into conjugated ten-carbon chains in a one-pot reaction. They are the first monometallic aromatic metalla-[n]annulenes with the ring size larger than 6, and their Craig-Hückel hybrid aromaticity is supported by various physical and computational parameters. Besides, these complexes show versatile reactivities, not only giving further evidence for their aromaticity, but also demonstrating their physical and chemical properties can easily be regulated. This work enriches the metalla-aromatic chemistry, and provides a new avenue for the synthesis of large metalla-annulenes with different ring sizes.

SELECTION OF CITATIONS
SEARCH DETAIL