Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
World J Gastroenterol ; 29(44): 5907-5918, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38111506

ABSTRACT

BACKGROUND: The efficacy and safety profile of tenofovir amibufenamide (TMF) in chronic hepatitis B (CHB) patients is not well-established. AIM: To compare the efficacy and safety of TMF and tenofovir alafenamide (TAF) over a 48-wk period in patients with CHB. METHODS: A total of 215 subjects meeting the inclusion criteria were enrolled and divided into two groups: TMF group (n = 106) and the TAF group (n = 109). The study included a comparison of virological response (VR): Undetectable hepatitis B virus DNA levels, alanine transaminase (ALT) normalization rates, renal function parameters, and blood lipid profiles. RESULTS: At 24 and 48 wk, VR rates for the TMF group were 53.57% and 78.57%, respectively, compared with 48.31% and 78.65% for the TAF group (P > 0.05). The VR rates were also similar in both groups among patients with low-level viremia, both hepatitis B e antigen (HBeAg)-positive and HBeAg-negative subgroups. The TMF cohort showed ALT normalization and renal safety profiles similar to the TAF group. There was a notable increase in total cholesterol levels in the TAF group (P = 0.045), which was not observed in the TMF group (P > 0.05). In patients with liver cirrhosis, both groups exhibited comparable VR and ALT normalization rates and renal safety profiles. However, the fibrosis 4 score at 48 wk showed a significant reduction in the TAF group as compared to the TMF group within the liver cirrhosis subgroup. CONCLUSION: Our study found TMF is as effective as TAF in treating CHB and has a comparable safety profile. However, TAF may be associated with worsening lipid profiles.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Tenofovir , Humans , Adenine/adverse effects , Adenine/therapeutic use , Alanine Transaminase , Antiviral Agents/adverse effects , Hepatitis B e Antigens , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/drug therapy , Lipids , Liver Cirrhosis/drug therapy , Reverse Transcriptase Inhibitors/therapeutic use , Tenofovir/adverse effects , Tenofovir/therapeutic use
2.
J Immunol ; 211(5): 895-902, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37459051

ABSTRACT

IL-27 is a pleiotropic cytokine that exhibits stimulatory/regulatory functions on multiple lineages of immune cells and has a potential to be used as a therapeutic for cancer. We have recently demonstrated that administration of IL-27 producing adeno-associated virus (AAV-IL-27) exhibits potent inhibition of tumor growth in mouse models. In this study, we demonstrate that AAV-IL-27 treatment leads to significant expansion of CD11b+Gr1+ myeloid cells. AAV-IL-27-induced expansion of CD11b+Gr1+ cells is IL-27R-dependent and requires Stat3 signaling, but it is inhibited by Stat1 signaling. AAV-IL-27 treatment does not increase the self-renewal capacity of CD11b+Gr1+ cells but induces significant expansion of Lin-Sca1+c-Kit+ (LSK) and granulocyte-monocyte progenitor cells. Despite exhibiting significant suppression of T cells in vitro, IL-27-induced CD11b+Gr1+ cells lost the tumor-promoting activity in vivo and overall play an antitumor role. In tumors from AAV-IL-27-treated mice, CD11b+Gr1+ cells are largely F4/80+ and express high levels of MHC class I/II and M1 macrophage markers. Thus, IL-27 gene therapy induces Stat3-mediated expansion of CD11b+Gr1+ myeloid cells and promotes accumulation of M1 macrophages in the tumor microenvironment.


Subject(s)
Interleukin-27 , Mice , Animals , Tumor Microenvironment , Macrophages , Myeloid Cells , T-Lymphocytes , CD11b Antigen
3.
iScience ; 26(6): 106904, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37275530

ABSTRACT

CD200 is overexpressed in many solid tumors and considered as an immune checkpoint molecule dampening cancer immunity. In this study, we found that CD200R-/- mice were significantly more potent in rejecting these CD200+ tumors. scRNA sequencing demonstrated that tumors from CD200R-/- mice had more infiltration of CD4+ and CD8+ T cells, and NK cells but less infiltration of neutrophils. Antibody depletion experiments revealed that immune effector cells are crucial in inhibiting tumor growth in CD200R-/- mice. Mechanistically, we found that CD200R signaling regulates the expression of chemokines in tumor-associated myeloid cells (TAMCs). In the absence of CD200R, TAMCs increased expression of CCL24 and resulted in increased infiltration of eosinophils, which contributes to anti-tumor activity. Overall, we conclude that CD200R signaling contributes to unfavorable TME through chemokine-dependent recruitment of immune suppressive neutrophils and exclusion of anti-cancer immune effectors. Our study has implications in developing CD200-CD200R targeted immunotherapy of solid tumors.

4.
Front Immunol ; 14: 1116749, 2023.
Article in English | MEDLINE | ID: mdl-36969215

ABSTRACT

CD24 is a GPI anchored cell surface glycoprotein whose function as a co-stimulatory molecule has been implicated. However, the function of CD24 on antigen presenting cells during T cell responses is not well understood. Here we show that in the CD24-deficient host, adoptively transferred CD4+ T cells undergo inefficient expansion and have accelerated cell death in lymph nodes, which results in insufficient priming of T cells. Insufficient expansion of T cells in the CD24-deficient host was not due to host anti-CD24 response by NK, T and B lymphocytes. Transgenic expression of CD24 on DC in CD24-/- mice restored T cell accumulation and survival in draining lymph nodes. Consistent with these findings, MHC II tetramer staining also revealed that an antigen-specific polyclonal T cell response was reduced in lymph nodes of CD24-/- mice. Taken together, we have revealed a novel role of CD24 on DC in optimal T cell priming in lymph nodes. These data suggest that CD24 blockade should lower unwanted T cell responses such as those in autoimmune diseases.


Subject(s)
CD24 Antigen , Dendritic Cells , T-Lymphocytes , Animals , Mice , Lymph Nodes , Membrane Glycoproteins/metabolism , CD24 Antigen/metabolism
5.
Am J Transl Res ; 14(4): 2291-2300, 2022.
Article in English | MEDLINE | ID: mdl-35559385

ABSTRACT

CD24 is a glycosyl-phosphatidylinositol (GPI) anchored cell surface glycoprotein with a variety of immunomodulatory functions such as inhibition of thymic generation of autoreactive T cells, regulation of antigen presenting cell functions, and mediation of autoimmunity. Given the autoimmune nature of FoxP3+ regulatory T cells and their importance in autoimmune diseases, we hypothesize that CD24 regulates the generation and functions of Treg cells. Through the analysis of the Treg repertoire in two strains of CD24-deficient mice, we found that CD24 does not globally affect the thymic generation of Treg cells. However, CD24 is abundantly expressed on Treg cells, and CD24 antibody treatment of Treg cells enhances their suppressive functions. Concurrently, we observed CD24-deficient Treg cells exhibit increased suppressive functions and produce more IL-10 compared to their wild type counterparts. In addition, CD24-deficient Treg cells exhibited more potent suppressive capacity in inhibiting the development of experimental autoimmune encephalomyelitis (EAE) in mice. Thus, CD24 on Treg cells regulates their suppressive functions. Our findings can partially explain the resistance of EAE development in CD24-deficient mice and CD24 polymorphism-associated susceptibility of human autoimmune diseases. Further investigations regarding mechanisms of CD24 regulation of Treg function may lead to a new approach for the immunotherapy of human autoimmune diseases.

6.
J Immunol ; 208(9): 2239-2245, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35418466

ABSTRACT

IL-27 is a pleiotropic cytokine that exhibits stimulatory/regulatory functions on multiple lineages of immune cells including T lymphocytes. In this study, we demonstrate that IL-27 directly induces CCL5 production by T lymphocytes, particularly CD8+ T cells in vitro and in vivo. IL-27-induced CCL5 production is IL-27R-dependent. In CD4+ T cells, IL-27-induced CCL5 production was primarily dependent on Stat1 activation, whereas in CD8+ T cells, Stat1 deficiency does not abrogate CCL5 induction. A chromatin immunoprecipitation assay revealed that in the CCL5 promoter region, both putative Stat3 binding sites exhibit significant binding to Stat3, whereas only one out of four Stat1 binding sites displays moderate binding to Stat1. In tumor-bearing mice, IL-27 induced dramatic production of CCL5 in tumor-infiltrating T cells. IL-27-induced CCL5 appears to contribute to an IL-27-mediated antitumor effect. This is signified by diminished tumor inhibition in anti-CCL5- and IL-27-treated mice. Additionally, intratumor delivery of CCL5 mRNA using lipid nanoparticles significantly inhibited tumor growth. Thus, IL-27 induces robust CCL5 production by T cells, which contributes to antitumor activity.


Subject(s)
Interleukin-27 , Animals , CD8-Positive T-Lymphocytes , Cytokines , Gene Expression , Liposomes , Mice , Nanoparticles
7.
J Control Release ; 345: 306-313, 2022 05.
Article in English | MEDLINE | ID: mdl-35301053

ABSTRACT

Cytokines are important immunotherapeutics with approved drugs for the treatment of human cancers. However, systemic administration of cytokines often fails to achieve adequate concentrations to immune cells in tumors due to dose-limiting toxicity. Thus, developing localized therapy that directly delivers immune-stimulatory cytokines to tumors may improve the therapeutic efficacy. In this study, we generated novel lipid nanoparticles (LNPs) encapsulated with mRNAs encoding cytokines including IL-12, IL-27 and GM-CSF, and tested their anti-tumor activity. We first synthesized ionizable lipid materials containing di-amino groups with various head groups (DALs). The novel DAL4-LNP effectively delivered different mRNAs in vitro to tumor cells and in vivo to tumors. Intratumoral injection of DAL4-LNP loaded with IL-12 mRNA was most potent in inhibiting B16F10 melanoma tumor growth compared to IL-27 or GM-CSF mRNAs in monotherapy. Furthermore, intratumoral injection of dual DAL4-LNP-IL-12 mRNA and IL-27 mRNA showed a synergistic effect in suppressing tumor growth without causing systematic toxicity. Most importantly, intratumoral delivery of IL-12 and IL-27 mRNAs induced robust infiltration of immune effector cells, including IFN-γ and TNF-α producing NK and CD8+ T cells into tumors. Thus, intratumoral administration of DAL-LNP loaded with IL-12 and IL-27 mRNA provides a new treatment strategy for cancer.


Subject(s)
Interleukin-27 , Nanoparticles , Neoplasms , CD8-Positive T-Lymphocytes , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Immunotherapy , Interleukin-12/genetics , Liposomes , Neoplasms/drug therapy , RNA, Messenger/genetics , RNA, Messenger/therapeutic use
9.
Front Cell Dev Biol ; 9: 739816, 2021.
Article in English | MEDLINE | ID: mdl-34692697

ABSTRACT

CD200-CD200R pathway regulates immune responses and has been implicated in the pathogenesis of a number of cancer types. CD200 blockade is considered a strategy for immunotherapy of CD200-positive cancers such as melanoma. Thus, it is critical to understand the potential impacts of CD200 blockade in a more human relevant tumor model. In this study, we evaluated these issues using the CD200+ Yumm1.7 mouse melanoma model. Yumm1.7 cells bear Braf/Pten mutations resembling human melanoma. We found that Yumm1.7 tumors grow significantly faster in CD200R-/- mice compared to wild type mice. Analysis of tumor immune microenvironment (TIME) revealed that tumors from CD200R-/- or anti-CD200 treated mice had downregulated immune cell contents and reduced TCR clonality compared to tumors from untreated wild type mice. T cells also showed impaired effector functions, as reflected by reduced numbers of IFN-γ+ and TNF-α+ T cells. Mechanistically, we found upregulation of the CCL8 gene in CD200R-/- tumors. In vitro co-culture experiments using Yumm1.7 tumor cells with bone marrow derived macrophages (BMDM) from WT and CD200R-/- mice confirmed upregulation of macrophage CCL8 in the absence of CD200-CD200R interaction. Finally, we found that anti-CD200 therapy failed to show efficacy either alone or in combination with checkpoint inhibitors such as anti-PD-1 or anti-CTLA4 in inhibiting Yumm1.7 tumor growth. Given that CD200R-deficiency or anti-CD200 treatment leads to reduced T cell responses in TME, using blockade of CD200 as an immunotherapy for cancers such as melanoma should be practiced with caution.

10.
Am J Cancer Res ; 10(11): 3565-3574, 2020.
Article in English | MEDLINE | ID: mdl-33294255

ABSTRACT

Cytokines are one of the first immunotherapeutics utilized in trials of human cancers with significant success. However, due to their significant toxicity and often lack of efficacy, cytokines have given their spotlight to other cancer immunotherapeutics such as immune checkpoint inhibitors. Nevertheless, only a subset of cancer patients respond to checkpoint inhibitors. Therefore, developing a novel cytokine-based immunotherapy is still necessary. Among an array of cytokine candidates, IL-27 is a unique one that exhibits clear anti-tumor activity with low toxicity. Systemically delivered IL-27 by adeno-associated virus (AAV-IL-27) is very well tolerized by mice and exhibits potent anti-tumor activity in a variety of tumor models. AAV-IL-27 exerts its anti-tumor activity through directly stimulation of immune effector cells and systemic depletion of Tregs, and is particularly suitable for delivery in combination with checkpoint inhibitors or vaccines. Additionally, AAV-IL-27 can also be delivered locally to tumors to exert its unique actions. In this review, we summarize the evidence that support these points and propose AAV-delivered IL-27 as a potential immunotherapeutic for cancer.

11.
Front Cell Dev Biol ; 8: 210, 2020.
Article in English | MEDLINE | ID: mdl-32292786

ABSTRACT

IL-27 is an anti-inflammatory cytokine that has been shown to have potent anti-tumor activity. We recently reported that systemic delivery of IL-27 using recombinant adeno-associated virus (rAAV) induced depletion of Tregs and significantly enhanced the efficacy of cancer immunotherapy in a variety of mouse tumor models. A potential caveat of systemic delivery of IL-27 using rAAV is that there is no practical method to terminate IL-27 production when its biological activity is no longer needed. Therefore, in this work, we tested if directly injecting AAV-IL-27 into tumors could lead to similar anti-tumor effect yet avoiding uncontrolled IL-27 production. We found that high levels of IL-27 was produced in tumors and released to peripheral blood after AAV-IL-27 intra-tumoral injection. AAV-IL-27 local therapy showed potent anti-tumor activity in mice bearing plasmacytoma J558 tumors and modest anti-tumor activity in mice bearing B16.F10 tumors. Intra-tumoral injection of AAV-IL-27 induced infiltration of immune effectors including CD8+ T cells and NK cells into tumors, caused systemic reduction of Tregs and stimulated protective immunity. Mechanistically, we found that IL-27 induced T cell expression of CXCR3 in an IL-27R-dependent manner. Additionally, we found that AAV-IL-27 local therapy had significant synergy with anti-PD-1 or T cell adoptive transfer therapy. Importantly, in mice whose tumors were completely rejected, IL-27 serum levels were significantly reduced or diminished. Thus, intra-tumoral injection of AAV-IL-27 is a feasible approach that can be used alone and in combination with anti-PD-1 antibody or T cell adoptive transfer for the treatment of cancer.

12.
Adv Exp Med Biol ; 1223: 155-165, 2020.
Article in English | MEDLINE | ID: mdl-32030689

ABSTRACT

Tumor-associated inflammation and immune responses are key components in the tumor microenvironment (TME) which regulate tumor growth, progression, and metastasis. Tumor-associated myeloid cells (TAMCs) are a group of cells that play multiple key roles including induction of tumor-associated inflammation/angiogenesis and regulation of tumor-specific T-cell responses. Thus, identification and characterization of key pathways that can regulate TAMCs are of critical importance for developing cancer immunotherapy. Recent studies suggest that CD200-CD200 receptor (CD200R) interaction may be important in regulating the TME via affecting TAMCs. In this chapter, we will give a brief overview of the CD200-CD200R axis, including the biology behind CD200-CD200R interaction and the role(s) it plays in tumor microenvironment and tumor growth, and activation/effector functions of T cells. We will also discuss CD200-CD200R's role as potential checkpoint molecules for cancer immunotherapy. Further investigation of the CD200-CD200R pathway will not only advance our understanding of tumor pathogenesis and immunity but also provide the rationale for CD200-CD200R-targeted immunotherapy of human cancer.


Subject(s)
Antigens, CD/metabolism , Immunotherapy , Neoplasms/therapy , Orexin Receptors/metabolism , Tumor Microenvironment/immunology , Antigens, CD/immunology , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Orexin Receptors/immunology
13.
Front Immunol ; 9: 873, 2018.
Article in English | MEDLINE | ID: mdl-29740452

ABSTRACT

Interleukin-27 (IL-27) and its subunit P28 (also known as IL-30) have been shown to inhibit autoimmunity and have been suggested as potential immunotherapeutic for autoimmune diseases such as multiple sclerosis (MS). However, the potential of IL-27 and IL-30 as immunotherapeutic, and their mechanisms of action have not been fully understood. In this study, we evaluated the efficacy of adeno-associated viral vector (AAV)-delivered IL-27 (AAV-IL-27) and IL-30 (AAV-IL-30) in a murine model of MS. We found that one single administration of AAV-IL-27, but not AAV-IL-30 completely blocked the development of experimental autoimmune encephalomyelitis (EAE). AAV-IL-27 administration reduced the frequencies of Th17, Treg, and GM-CSF-producing CD4+ T cells and induced T cell expression of IFN-γ, IL-10, and PD-L1. However, experiments involving IL-10-deficient mice and PD-1 blockade revealed that AAV-IL-27-induced IL-10 and PD-L1 expression were not required for the prevention of EAE development. Surprisingly, neither AAV-IL-27 nor AAV-IL-30 treatment inhibited EAE development and Th17 responses when given at disease onset. We found that mice with established EAE had significant expansion of CD11b+Gr-1+ cells, and AAV-IL-27 treatment further expanded these cells and induced their expression of Th17-promoting cytokines such as IL-6. Adoptive transfer of AAV-IL-27-expanded CD11b+Gr-1+ cells enhanced EAE development. Thus, expansion of CD11b+Gr-1+ cells provides an explanation for the resistance to IL-27 therapy in mice with established disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Genetic Therapy/methods , Interleukin-27/immunology , Multiple Sclerosis/immunology , Myeloid Cells/immunology , Animals , CD11b Antigen/immunology , CD11b Antigen/metabolism , Dependovirus/genetics , Encephalomyelitis, Autoimmune, Experimental/therapy , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-27/administration & dosage , Interleukin-27/genetics , Mice , Mice, Inbred C57BL , Multiple Sclerosis/therapy , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , Receptors, Interleukin , Treatment Outcome
14.
JCI Insight ; 3(7)2018 04 05.
Article in English | MEDLINE | ID: mdl-29618655

ABSTRACT

Tumor-induced expansion of Tregs is a significant obstacle to cancer immunotherapy. However, traditional approaches to deplete Tregs are often inefficient, provoking autoimmunity. We show here that administration of IL-27-expressing recombinant adeno-associated virus (AAV-IL-27) significantly inhibits tumor growth and enhances T cell responses in tumors. Strikingly, we found that AAV-IL-27 treatment causes rapid depletion of Tregs in peripheral blood, lymphoid organs, and - most pronouncedly - tumor microenvironment. AAV-IL-27-mediated Treg depletion is dependent on IL-27 receptor and Stat1 in Tregs and is a combined result of CD25 downregulation in Tregs and inhibition of IL-2 production by T cells. In combination with a GM-CSF vaccine, AAV-IL-27 treatment not only induced nearly complete tumor rejection, but also resulted in amplified neoantigen-specific T cell responses. AAV-IL-27 also dramatically increased the efficacy of anti-PD-1 therapy, presumably due to induction of PD-L1 in T cells and depletion of Tregs. Importantly, AAV-IL-27 therapy did not induce significant adverse events, partially due to its induction of IL-10. In a plasmacytoma mouse model, we found that IL-10 was required for AAV-IL-27-mediated tumor rejection. Thus, our study demonstrates the potential of AAV-IL-27 as an independent cancer therapeutic and as an efficient adjuvant for cancer immunotherapy.


Subject(s)
Cancer Vaccines/administration & dosage , Genetic Therapy/methods , Interleukins/genetics , Lymphocyte Depletion/methods , Neoplasms/therapy , T-Lymphocytes, Regulatory/immunology , Animals , Cancer Vaccines/immunology , Cell Line, Tumor/transplantation , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukins/immunology , Mice , Mice, Knockout , Neoplasms/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , T-Lymphocytes, Regulatory/metabolism , Treatment Outcome , Tumor Microenvironment/immunology
15.
Immunology ; 152(4): 638-647, 2017 12.
Article in English | MEDLINE | ID: mdl-28758191

ABSTRACT

Stem cell antigen-1 (Sca-1/Ly6A/E) is a cell surface glycoprotein that is often used as a biomarker for stem cells and cell stemness. However, it is not clear what factors can directly induce the expression of Sca-1/Ly6A/E in T lymphocytes in vivo, and if induction of Sca-1 is associated with T cell stemness. In this study, we show that interleukin-27 (IL-27), a member of the IL-12 family of cytokines, directly induces Sca-1 expression in T cells in vivo. We found that mice-deficient for IL-27 (either P28 or EBI3) or its signalling (IL-27Rα) had profound reduction of Sca-1 expression in naive (CD62L+  CD44- ), memory (CD62L+  CD44+ ) and effector (CD62L-  CD44+ ) T cells. In contrast, in vivo delivery of IL-27 using adeno-associated viral vectors strongly induced the expression of Sca-1 in naive and memory/effector T-cell populations in an IL-27 receptor- or signal transducer and activator of transcription 1-dependent manner. Interestingly, IL-27-induced Sca-1+ T cells do not express or up-regulate classic stem cell-associated genes such as Nanog, Oct4, Sox2 and Ctnnb1. However, IL-27-induced Sca-1+ T cells had increased expression of effector/memory-associated transcription factor T-bet, Eomes and Blimp1. Hence, IL-27 signalling directly induces the expression of Sca-1/Ly6A/E expression in T cells. Direct expansion of Sca-1+  CD62L+  CD44- T memory stem cells may explain why IL-27 enhances T-cell memory.


Subject(s)
Antigens, Ly/immunology , Gene Expression Regulation/immunology , Immunologic Memory , Interleukins/immunology , Membrane Proteins/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Ly/genetics , Interleukins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , Receptors, Interleukin , Signal Transduction/genetics
16.
J Immunol ; 197(4): 1489-97, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27385779

ABSTRACT

CD200 is a cell surface glycoprotein that functions through engaging CD200R on cells of the myeloid lineage and inhibits their functions. Expression of CD200 was implicated in a variety of human cancer cells, including melanoma cells; however, its roles in tumor growth and immunity are not clearly understood. In this study, we used CD200R-deficient mice and the B16 tumor model to evaluate this issue. We found that CD200R-deficient mice exhibited accelerated growth of CD200(+), but not CD200(-), B16 tumors. Strikingly, CD200R-deficient mice receiving CD200(+) B16 cells i.v. exhibited massive tumor growth in multiple organs, including liver, lung, kidney, and peritoneal cavity, whereas the growth of the same tumors in wild-type mice was limited. CD200(+) tumors grown in CD200R-deficient mice contained higher numbers of CD11b(+)Ly6C(+) myeloid cells, exhibited increased expression of VEGF and HIF1α genes with increased angiogenesis, and showed significantly reduced infiltration of CD4(+) and CD8(+) T cells, presumably as the result of reduced expression of T cell chemokines, such as CXCL9 and CXCL16. The liver from CD200R-deficient mice, under metastatic growth of CD200(+) tumors, contained significantly increased numbers of CD11b(+)Gr1(-) myeloid cells and Foxp3(+) regulatory T cells and reduced numbers of NK cells. Liver T cells also had a reduced capacity to produce IFN-γ or TNF-α. Taken together, we revealed a critical role for CD200R signaling in limiting the growth and metastasis of CD200(+) tumors. Thus, targeting CD200R signaling may potentially interfere with the metastatic growth of CD200(+) tumors, like melanoma.


Subject(s)
Antigens, CD/metabolism , Melanoma, Experimental/pathology , Neoplasm Invasiveness/pathology , Signal Transduction/physiology , Animals , Antigens, CD/immunology , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockout Techniques , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness/immunology , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/metabolism , Real-Time Polymerase Chain Reaction , Tumor Microenvironment/physiology
17.
J Leukoc Biol ; 100(2): 403-11, 2016 08.
Article in English | MEDLINE | ID: mdl-27106672

ABSTRACT

IL-27 is a heterodimeric cytokine that is composed of two subunits, i.e., EBV-induced gene 3 and IL-27p28 (also known as IL-30). Although the role of endogenous IL-27 in the pathogenesis of autoimmune colitis, an experimental model of human inflammatory bowel disease, remains controversial, IL-27 local delivery has been shown to inhibit autoimmune colitis. IL-30 has been shown to inhibit Th1 and Th17 responses and is considered a potential therapeutic for certain autoimmune diseases. In this study, we have compared the therapeutic efficacy of adeno-associated viral vector-delivered IL-27 and IL-30 in a murine model of autoimmune colitis. We found that 1 single administration of adeno-associated viral vector-delivered IL-27, but not adeno-associated viral vector-delivered IL-30, nearly completely inhibited autoimmune colitis. Adeno-associated viral vector-delivered IL-27 administration inhibited Th17 responses and induced T cell expression of IL-10, programmed death ligand 1, and stem cell antigen 1. Intriguingly, adeno-associated viral vector-delivered IL-27 treatment enhanced Th1 responses and inhibited regulatory T cell responses. Experiments involving the adoptive transfer of IL-10-deficient T cells revealed that adeno-associated viral vector-delivered IL-27-induced IL-10 production was insufficient to mediate inhibition of autoimmune colitis, whereas anti-programmed death 1 antibody treatment resulted in the breaking of adeno-associated viral vector-delivered IL-27-induced T cell tolerance. Thus, systemic delivery of IL-27 inhibits Th17 responses and induces multiple inhibitory pathways, including programmed death ligand 1 in T cells, and adeno-associated viral vector-delivered IL-27, but not IL-30, may have a therapeutic potential for the treatment of human inflammatory bowel disease.


Subject(s)
Autoimmune Diseases/therapy , Colitis/therapy , Dependovirus/genetics , Genetic Vectors/administration & dosage , Interleukin-27/genetics , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Colitis/immunology , Colitis/metabolism , Cytokines/immunology , Interleukin-10/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
18.
Oncoimmunology ; 4(7): e1014232, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26140236

ABSTRACT

Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine that regulates immune responses. IL-10 has also been shown to enhance antitumor CD8+ T-cell responses in tumor models although the underlying mechanisms are not fully understood. In this study, we used a series of genetic mouse models and the mouse plasmacytoma J558 model to investigate this issue. J558 tumors grew significantly faster in IL-10-/- mice than in wild type (WT) mice, but similarly in IL-10 -/- Rag2 -/- and Rag2 -/- mice. Tumors from IL-10 -/- mice contained fewer IFN-γ-producing CD8+ and CD4+ T cells than tumors from WT mice. Strikingly, depletion of total CD4+ T cells, but not CD25+ cells, resulted in tumor eradication in IL-10 -/- mice. Adoptive transfer studies revealed that CD4+ T cells from IL-10 -/- mice exhibited more potent suppression of cytotoxic T lymphocyte (CTL)-mediated tumor rejection than their WT counterparts, and IL-10-deficient tumor-infiltrating CD4+ T cells expressed higher levels of PD-L1 and CTLA-4 inhibitory molecules. Although IL-10-deficient CD8+ T cells are not defective in activation and initial rejection of tumors, adoptive transfer studies using IL-10-deficient P1CTL transgenic T cells that recognize the tumor rejection antigen P1A reveal that IL-10 is required for long-term persistence of CTLs and control of tumor growth. Thus, we have found that IL-10 enhances antitumor CTL responses by inhibiting highly suppressive CD4+ T cells and promoting CTL persistence. These data have important implications for the design of immunotherapy for human cancer.

19.
Oncoimmunology ; 4(7): e989137, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26140252

ABSTRACT

Epstein-Barr virus-induced gene 3 (EBI3) encoded protein can form heterodimers with IL-27P28, and IL-12P35 to form IL-27, and IL-35. However, IL-27 stimulates, whereas IL-35 inhibits antitumor T-cell responses. IL-27 also limits the Foxp3+ regulatory T cell (Treg) population, whereas IL-35 has been shown to expand Tregs and foster Treg suppressive functions. It remains unclear which group of forces are dominant during antitumor T-cell responses. In this study, we evaluated the tumor growth and antitumor T-cell responses in EBI3-deficient mice that lack both IL-27 and IL-35. We found that injecting B16 melanoma cells into EBI3-deficient C57BL/6 mice, or J558 plasmacytoma cells into EBI3-deficient BALB/c mice resulted in significantly increased tumor growth relative to those implanted in wild-type control mice. Tumors from EBI3-deficient mice contained significantly decreased proportions of CD8+ T cells and increased proportions of CD4+FoxP3+ Treg cells as compared to those from EBI3-intact mice. Tumor-infiltrating T cells from EBI3-deficient mice were impaired in their capacity to produce IFNγ. Phenotypically, Tregs from EBI3-deficient mice were highly suppressive and produced IL-10 in the tumor microenvironment. Depletion of Tregs or inactivation of the IL-10 pathway significantly abrogated tumor growth enhancement in Ebi3-/- mice. Finally, we showed that Ebi3-/- mice administered a melanoma vaccine failed to mount a CD8+ T-cell response and the vaccine failed to confer tumor rejection in EBI3-deficient mice. Taken together, these results suggest that Ebi3-/- mice show a phenotype of IL-27-deficiency rather than IL-35-deficiency during anti-tumor T-cell responses. Thus, our results suggest that endogenous IL-27 is critical for both spontaneous and vaccine-induced antitumor T-cell responses.

20.
Immunotherapy ; 7(2): 191-200, 2015.
Article in English | MEDLINE | ID: mdl-25713993

ABSTRACT

Accumulating evidences from animal studies have indicated that both endogenous and exogenous IL-27, an IL-12 family of cytokine, can increase antitumor T-cell activities and inhibit tumor growth. IL-27 can modulate Treg responses, and program effector T cells into a unique T-effector stem cell (TSEC) phenotype, which enhances T-cell survival in the tumor microenvironment. However, animal studies also suggest that IL-27 induces molecular pathways such as IL-10, PD-L1 and CD39, which may downregulate tumor-specific T-cell responses. In this review paper, we will discuss the Yin and Yang aspects of IL-27 in the induction of tumor-specific T-cell responses, and the potential impacts of these functions of IL-27 in the design of cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Interleukins/immunology , Lymphoid Progenitor Cells/immunology , Neoplasms/therapy , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Antigens, CD/immunology , Apyrase/immunology , B7-H1 Antigen/immunology , Humans , Interleukin-10/immunology , Lymphoid Progenitor Cells/pathology , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...