Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 392
Filter
1.
Menopause ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743907

ABSTRACT

OBJECTIVE: The aim of the study is to identify appropriate definitions and patient-reported outcome measures (PROMs) for each of the eight core outcomes previously selected for genitourinary symptoms associated with menopause: pain with sex, vulvovaginal dryness, vulvovaginal discomfort or irritation, discomfort or pain when urinating, change in most bothersome symptom, distress, bother or interference of genitourinary symptoms, satisfaction with treatment, and side effects. METHODS: We conducted a systematic review to identify possible definitions and PROMs, including their measurement properties. Identified definitions and relevant PROMs with acceptable measurement properties were entered into an international consensus process involving 28 participants from 10 countries to achieve final recommendations for each core outcome. RESULTS: A total of 87 publications reporting on 34 PROMs were identified from 21,207 publications screened. Of these 34 PROMs, 29 were not considered to sufficiently map onto the core outcomes, and 26 of these also had insufficient measurement properties. Therefore, only five PROMs corresponding to two core outcomes were considered for recommendation. We recommend the PROMIS Scale v2.0 - Sexual Function and Satisfaction: Vaginal Discomfort with Sexual Activity to measure the outcome of "pain with sexual activity" and the Day-to-Day Impact of Vaginal Aging (DIVA) Questionnaire to measure "distress, bother or interference" from genitourinary symptoms. Six definitions of "side effects" were identified and considered. We recommend that all trials report adverse events in study participants, which is a requirement of Good Clinical Practice. CONCLUSIONS: Suitable PROMs and definitions were identified to measure three of eight core outcomes. Because of the lack of existing measures, which align with the core outcomes and have evidence of high-quality measurement properties, future work will focus on developing or validating PROMs for the remaining five core outcomes.

2.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703140

ABSTRACT

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Subject(s)
Colitis, Ulcerative , Curcumin , Metal-Organic Frameworks , Peptides , Curcumin/chemistry , Curcumin/administration & dosage , Metal-Organic Frameworks/chemistry , Animals , Humans , Peptides/chemistry , Peptides/administration & dosage , Colitis, Ulcerative/drug therapy , Mice , Chitosan/chemistry , Egg White/chemistry , Polysaccharides/chemistry , Male , Administration, Oral , Drug Synergism , gamma-Cyclodextrins/chemistry , Drug Carriers/chemistry , Egg Proteins/chemistry
3.
Int J Biol Macromol ; 269(Pt 1): 132107, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710246

ABSTRACT

Soft assembly of peptide and curcumin (Cur) molecules enables functional integration by finding dynamic equilibrium states through non-covalent interactions. Herein, we developed two soft assembly systems, curcumin-egg white peptides (Cur-EWP) aggregations (AGs) and Cur-EWP-casein-quaternary chitosan (Cur-EWP-CA-QC) nanoparticles (NPs) to comparatively investigate their therapeutic effects on ulcerative colitis in mice and elucidate their underlying mechanism. Results revealed that Cur-EWP AGs, despite gastrointestinal tract instability, exhibited a propensity for swift accumulation within the colorectal region, enriching mucus-associated and short-chain fatty acid (SCAF)-producing bacteria, restoring the intestinal barrier damage. Whereas, Cur-EWP-CA-QC NPs, benefiting from their remarkable stability and exceptional mucosal adsorption properties, not only enhanced permeability of Cur and EWP in the small intestine to activate the immune response and boost tight junction protein expression but also, in their unabsorbed state, regulated the intestinal flora, exerting potent anti-inflammatory activity. Soft assembly of peptides and hydrophobic nutraceuticals could synergize biological activities to modulate chronic diseases.

4.
Food Chem X ; 22: 101387, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38665629

ABSTRACT

A Se site targeted-two circles antioxidant of polyphenols EGCG and genistein in glutathione peroxidase 4 (GPx4)-like catalytic peroxide H2O2 and cumene hydroperoxide degradation was demonstrated by surface-enhanced Raman scattering (SERS). Se atom's active center is presenting a 'low-oxidation' and a 'high-oxidation' catalytic cycle. The former is oxidized to selenenic acid (SeO-) with a Raman bond at 619/ 610 cm-1 assigned to the νO - Se by the hydroperoxide substrate at 544/ 551 cm-1 assigned to ωHSeC decreased. Under oxidative stress, the enzyme shifted to 'high-oxidation' catalytic cycle, in which GPx4 shuttles between R-SeO- and R-SeOO- with a Raman intensity of bond at 840/ 860 cm-1 assigned to νO[bond, double bond]Se. EGCG could act as a reducing agent both in H2O2 and Cu-OOH degradation, while, genistein can only reduce Cu-OOH, because it binds more readily to the selenium site in GPx4 than EGCG with a closer proximity, therefore may affect its simultaneous binding to coenzymes.

5.
Food Chem ; 451: 139337, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38663243

ABSTRACT

Alcoholic liver disease (ALD) is a serious health threat. Soybean meal peptide (SMP) supplementation may protect against this damage; however, the potential mechanism underlying the specific sequence of SMPs is unclear. Protein-protein interaction and proteomic analyses are effective methods for studying functional ingredients in diseases. This study aimed to investigate the potential mechanism of action of the peptide Gly-Thr-Tyr-Trp (GTYW) on ALD using protein-protein interaction and proteomic analyses. These results demonstrate that GTYW influenced the targets of glutathione metabolism (glutathione-disulfide reductase, glutathione S-transferase pi 1, and glutathione S-transferase mu 2). It also regulated the expression of targets related to energy metabolism and amino acid conversion (trypsin-2, cysteine dioxygenase type-1, and F6SJM7). Amino acid and lipid metabolisms were identified based on Gene Ontology annotation. These results indicate that GTYW might affect alcohol-related liver disease signaling pathways. This study provides evidence of the protective and nutritional benefits of SMPs in ALD treatment.

6.
Nat Genet ; 56(4): 637-651, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565644

ABSTRACT

Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.


Subject(s)
Carcinoma, Endometrioid , Endometrial Hyperplasia , Endometrial Neoplasms , Fertility Preservation , Proteogenomics , Humans , Female , Progestins/therapeutic use , Antineoplastic Agents, Hormonal , Endometrial Hyperplasia/drug therapy , Fertility Preservation/methods , Retrospective Studies , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
7.
Animals (Basel) ; 14(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612276

ABSTRACT

Under caged stress conditions, severe disruptions in duck intestinal barrier function, which adversely affect economic performance, have been observed. MiRNAs play a crucial role in cellular processes, but the mechanisms underlying their involvement in repairing oxidative stress-induced damage to duck intestinal barriers have not been elucidated. We performed miRNA-seq and protein tandem mass tagging (TMT) sequencing and identified differentially expressed miRNAs and proteins in oxidative stress-treated ducks. Dual-luciferase reporter vector experiments, RT-qPCR, and Western blotting revealed the regulatory role of apla-miR-106a-5p/MAP3K2 in intestinal barrier damage repair. The results showed that oxidative stress led to shortened villi and deepened crypts, impairing intestinal immune function. Significant downregulation of apla-miR-106a-5p was revealed by miRNA-seq, and the inhibition of its expression not only enhanced cell viability but also improved intestinal barrier function. TMT protein sequencing revealed MAP3K2 upregulation in caged-stressed duck intestines, and software analysis confirmed MAP3K2 as the target gene of apla-miR-106a-5p. Dual-fluorescence reporter gene experiments demonstrated direct targeting of MAP3K2 by apla-miR-106a-5p. RT-qPCR showed no effect on MAP3K2 expression, while Western blot analysis indicated that MAP3K2 protein expression was suppressed. In summary, apla-miR-106a-5p targets MAP3K2, regulating gene expression at the transcriptional level and facilitating effective repair of intestinal barrier damage. This discovery provides new insights into the molecular mechanisms of physiological damage in ducks under caged stress, offering valuable guidance for related research.

8.
BMC Vet Res ; 20(1): 125, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561794

ABSTRACT

BACKGROUND: Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator (SPM), is derived from docosahexaenoic acid (DHA). It plays a key role in actively resolving inflammatory responses, which further reduces small intestinal damage. However, its regulation of the apoptosis triggered by endoplasmic reticulum (ER) stress in intestinal epithelial cells is still poorly understood. The intestinal porcine epithelial cells (IPEC-J2) were stimulated with tunicamycin to screen an optimal stimulation time and concentration to establish an ER stress model. Meanwhile, RvD1 (0, 1, 10, 20, and 50 nM) cytotoxicity and its impact on cell viability and the effective concentration for reducing ER stress and apoptosis were determined. Finally, the effects of RvD1 on ER stress and associated apoptosis were furtherly explored by flow cytometry analysis, AO/EB staining, RT-qPCR, and western blotting. RESULTS: The ER stress model of IPEC-J2 cells was successfully built by stimulating the cells with 1 µg/mL tunicamycin for 9 h. Certainly, the increased apoptosis and cell viability inhibition also appeared under the ER stress condition. RvD1 had no cytotoxicity, and its concentration of 1 nM significantly decreased cell viability inhibition (p= 0.0154) and the total apoptosis rate of the cells from 14.13 to 10.00% (p= 0.0000). RvD1 at the concentration of 1 nM also significantly reduced the expression of glucose-regulated protein 78 (GRP-78, an ER stress marker gene) (p= 0.0000) and pro-apoptotic gene Caspase-3 (p= 0.0368) and promoted the expression of B cell lymphoma 2 (Bcl-2, an anti-apoptotic gene)(p= 0.0008). CONCLUSIONS: Collectively, the results shed light on the potential of RvD1 for alleviating apoptosis triggered by ER stress, which may indicate an essential role of RvD1 in maintaining intestinal health and homeostasis.


Subject(s)
Apoptosis , Docosahexaenoic Acids , Animals , Swine , Docosahexaenoic Acids/pharmacology , Tunicamycin/pharmacology , Endoplasmic Reticulum Stress
9.
Funct Integr Genomics ; 24(2): 71, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568332

ABSTRACT

The incidence rate of developing ovarian cancer decreases over the years; however, mortality ranks top among malignancies of women, mainly metastasis through local invasion. Matrilin-2 (MATN2) is a member of the matrilin family that plays an important role in many cancers. However, its relationship with ovarian cancer remains unknown. Our study aimed to explore the function and possible mechanism of MATN2 in ovarian cancer. Human ovarian cancer tissue microarrays were used to detect the MATN2 expression in different types of ovarian cancer using immunohistochemistry (IHC). CCK-8, wound scratch healing assay, transwell assay, and flow cytometry were used to detect cell mobility. Gene and protein expression were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. MATN2 interacts with phosphatase, and the tensin homolog (PTEN) deleted on chromosome 10 was analyzed using TCGA database and co-immunoprecipitation (Co-IP). In vivo experiments were conducted using BALB/c nude mice, and tumor volume and weight were recorded. Tumor growth was determined using hematoxylin and eosin (H&E) and IHC staining. MATN2 was significantly downregulated in ovarian cancer cells. The SKOV3 and A2780 cell mobility was significantly inhibited by MATN2 overexpression, while the cell apoptosis rate was significantly increased. MATN2 overexpression decreased transplanted tumor size in vivo. These results were reversed by inhibiting MATN2. Furthermore, we found that PTEN closely interacted with MATN2 using bioinformatics and Co-IP. MATN2 overexpression significantly inhibited the PI3K/AKT pathway, however, PTEN suppression reversed this effect of MATN2 overexpression. These results indicated that MATN2 may play a critical role in ovarian cancer development by inhibiting cells proliferation and migration. The mechanism was related to interacting with PTEN, thus inhibiting downstream effectors in the PI3K/AKT pathway, which may be a novel target for treating ovarian cancer.


Subject(s)
Ovarian Neoplasms , Animals , Mice , Female , Humans , Ovarian Neoplasms/genetics , Matrilin Proteins , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Cell Line, Tumor , Mice, Nude , PTEN Phosphohydrolase/genetics
10.
J Agric Food Chem ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592417

ABSTRACT

Bioactive peptides have been shown to affect cell membrane fluidity, which is an important indicator of the cell membrane structure and function. However, the underlying mechanism of egg white-derived bioactive peptide regulation of cell membrane fluidity has not been elucidated yet. The cell membrane fluidity was investigated by giant unilamellar vesicles in the present study. The results showed that peptides TCNW, ADWAK, ESIINF, VPIEGII, LVEEY, and WKLC connect to membranes through intermolecular interactions, such as hydrogen bonding and regulated membrane fluidity, in a concentration-dependent way. In addition, peptides prefer to localize in the hydrophobic core of the bilayers. This study provides a theoretical basis for analyzing the localization of egg white bioactive peptides in specific cell membrane regions and their influence on the cell membrane fluidity.

11.
Menopause ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688464

ABSTRACT

OBJECTIVE: The aim of the study is to identify suitable definitions and patient-reported outcome measures (PROMs) to assess each of the six core outcomes previously identified through the COMMA (Core Outcomes in Menopause) global consensus process relating to vasomotor symptoms: frequency, severity, distress/bother/interference, impact on sleep, satisfaction with treatment, and side effects. METHODS: A systematic review was conducted to identify relevant definitions for the outcome of side-effects and PROMs with acceptable measurement properties for the remaining five core outcomes. The consensus process, involving 36 participants from 16 countries, was conducted to review definitions and PROMs and make final recommendations for the measurement of each core outcome. RESULTS: A total of 21,207 publications were screened from which 119 reporting on 40 PROMs were identified. Of these 40 PROMs, 36 either did not adequately map onto the core outcomes or lacked sufficient measurement properties. Therefore, only four PROMs corresponding to two of the six core outcomes were considered for recommendation. We recommend the Hot Flash Related Daily Interference Scale to measure the domain of distress, bother, or interference of vasomotor symptoms and to capture impact on sleep (one item in the Hot Flash Related Daily Interference Scale captures interference with sleep). Six definitions of "side effects" were identified and considered. We recommend that all trials report adverse events, which is a requirement of Good Clinical Practice. CONCLUSIONS: We identified suitable definitions and PROMs for only three of the six core outcomes. No suitable PROMs were found for the remaining three outcomes (frequency and severity of vasomotor symptoms and satisfaction with treatment). Future studies should develop and validate PROMs for these outcomes.

12.
Environ Toxicol ; 39(6): 3597-3611, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488660

ABSTRACT

Nickel (Ni) is recognized as a carcinogenic metal, and its widespread use has led to severe environmental and health problems. Although the lung is among the main organs affected by Ni, the precise mechanisms behind this effect remain poorly understood. This study aimed to elucidate the physiological mechanisms underlying Ni-induced pulmonary fibrosis (PF), using various techniques including histopathological detection, biochemical analysis, immunohistochemistry, western blotting, and quantitative real-time PCR. Mice were treated with nickel chloride (NiCl2), which induced PF (detected by Masson staining), up-regulation of α-smooth muscle actin (α-SMA), and collagen-1 mRNA and protein expression. NiCl2 was found to induce PF by: activation of the epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß1 (TGF-ß1)/Smad signaling pathway; up-regulation of protein and mRNA expression of TGF-ß1, p-Smad2, p-Smad3, vimentin, and N-cadherin; and down-regulation of protein and mRNA expression of E-cadherin. In addition, NiCl2 treatment increased malondialdehyde content while inhibiting antioxidant activity, as indicated by decreased catalase, total antioxidant capacity, and superoxide dismutase activities, and glutathione content. Co-treatment with the effective antioxidant and free radical scavenger N-acetyl cysteine (NAC) plus NiCl2 was used to study the effects of oxidative stress in NiCl2-induced PF. The addition of NAC significantly mitigated NiCl2-induced PF, and reversed activation of the TGF-ß1/Smad signaling pathway and EMT. NiCl2-induced PF was therefore shown to be due to EMT activation via the TGF-ß1/Smad signaling pathway, mediated by oxidative stress.


Subject(s)
Epithelial-Mesenchymal Transition , Nickel , Oxidative Stress , Pulmonary Fibrosis , Signal Transduction , Smad Proteins , Transforming Growth Factor beta1 , Animals , Epithelial-Mesenchymal Transition/drug effects , Nickel/toxicity , Oxidative Stress/drug effects , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Signal Transduction/drug effects , Mice , Smad Proteins/metabolism , Male , Lung/drug effects , Lung/pathology , Lung/metabolism
13.
Chem Biol Interact ; 394: 110975, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552765

ABSTRACT

Nickel (Ni) and its compounds are common, widely distributed components of hazardous waste in the chemical industry. Excessive exposure to Ni can cause kidney damage in humans and animals. We investigated the impact of Ni on renal mitochondria using in vivo and in vitro models of Ni nephrotoxicity, and explored the Ni nephrotoxic mechanism. We showed that nickel chloride (NiCl2) damaged the renal mitochondria, causing mitochondrial swelling, breakage of the mitochondrial cristae, increased levels of mitochondrial reactive oxygen species (mt-ROS), and depolarization of the mitochondrial membrane potential (MMP). The levels of the mitochondrial respiratory chain complexes I-IV were reduced in the kidneys of mice treated with NiCl2. In addition, NiCl2 treatment inhibited mitochondrial biogenesis in renal cells by down-regulating mRNA and the protein expression of TFAM, PGC-1α, and NRF1. Moreover, NiCl2 reduced the levels of the proteins involved in mitochondrial fusion, including Mfn1 and Mfn2, while significantly augmenting the levels of the proteins Fis1 and Drip1 involved in mitochondrial fission in renal cells. Taken together, these results suggested that NiCl2 inhibited mitochondrial biogenesis, suppressed mitochondrial fusion, and promoted mitochondrial fission, resulting in mitochondrial dysfunction in renal cells, ultimately causing renal injury. This study provided novel insights into the mechanisms of nephrotoxicity of Ni and new ideas for the development of targeted treatments for Ni-induced kidney injury.


Subject(s)
Kidney , Membrane Potential, Mitochondrial , Mitochondria , Mitochondrial Dynamics , Nickel , Organelle Biogenesis , Reactive Oxygen Species , Nickel/toxicity , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Mice , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Male , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line
14.
Ecotoxicol Environ Saf ; 273: 116150, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430579

ABSTRACT

Nickel (Ni), an environmental health hazard, is nephrotoxic to humans, but the exact mechanism is unknown. This study aims to identify whether nephrotoxicity is associated with autophagy. Here, nickel chloride (NiCl2) increased autophagy in TCMK-1 cells. NiCl2 induces autophagy through Akt and AMPK/mTOR pathways. Next, oxidative stress was investigated in NiCl2-induced autophagy. The findings demonstrated that the antioxidant (NAC) or mitochondrial targeted antioxidant (Mito-TEMPO) attenuated NiCl2-induced autophagy, reversed the influence on AMPK-mTOR and Akt pathways. Additionally, our study examined the role of autophagy in NiCl2-induced nephrotoxicity. Autophagy inhibition with 3-MA could inhibit cell viability and increase apoptosis in the TCMK-1 cells, however, autophagy promotion with rapamycin relieved cytotoxicity and decreased apoptosis. Additionally, co-treatment with Z-VAD-FMK reduced cytotoxicity, but did not affect autophagy. Besides, NiCl2 can increase the level of mitophagy in vivo and vitro. Mitophagy inhibition could inhibit cell viability and increase apoptosis in the TCMK-1 cells, whereas, promotion of mitophagy could increase cell viability and decrease apoptosis. In summary, above-mentioned results showed that NiCl2 induces autophagy in TCMK-1 cells through oxidative stress-dependent AMPK/AKT-mTOR pathway, autophagy plays a role in reducing NiCl2-induced renal toxicity, and a major mechanism in autophagy's inhibitory effect on NiCl2-induced apoptosis may be mitophagy.


Subject(s)
Antioxidants , Proto-Oncogene Proteins c-akt , Humans , Antioxidants/pharmacology , Nickel/toxicity , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy
16.
Antioxidants (Basel) ; 13(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38539824

ABSTRACT

Puerarin is an isoflavone extracted from Pueraria mirifica, a wildlife leguminous plant. It has been reported to possess antioxidant, anti-inflammatory, and anti-bacterial properties. However, the effects of directly adding puerarin to the diets of sows, in terms of reproductive performance and antioxidant properties, have not been reported. For this study, 240 sows with varying parities were selected and randomly divided into six treatment groups using a two × three experimental design. The six treatment groups consisted of two diets (control and puerarin) and three parities (zero, one, and two parities or more). The puerarin group was supplemented with 1 g/kg of puerarin. The experiment commenced with mating and continued until 21 days post-delivery. The sow reproductive performance was not affected by supplementing their diets with puerarin (p > 0.05). Dietary supplementation with puerarin significantly increased the daily body weight (BW) gain of piglets and their mean BW at weaning (p < 0.05). Compared with the control group, sows in the puerarin group had significantly higher glutathione peroxidase activity in serum and also significantly increased immunoglobulin A and G levels in serum, colostrum, and milk, but significantly lower malondialdehyde concentration in serum (p < 0.05). Thus, puerarin improved the immune response and antioxidant capacity of sows and increased the daily BW gain of their offspring.

17.
Int J Biol Macromol ; 266(Pt 2): 131267, 2024 May.
Article in English | MEDLINE | ID: mdl-38556233

ABSTRACT

This study aims to develop ultrasound-assisted acid-induced egg white protein (EWP)-soy protein isolate (SPI) composite gels and to investigate the mechanistic relationship between the co-aggregation behavior of composite proteins and gel properties through aggregation kinetics monitored continuously by turbidity. The results showed that the inclusion of EWP caused the attenuation of gel properties and maximum aggregation (Amax) because EWP could aggregate with SPI at a higher rate (Kapp), which impeded the interaction between SPI and the formation of a continuous gelling network. In the EWP-dominated system, SPI with higher molecular weights also increased the fractal dimension of gels. Ultrasound improved properties of composite gels, especially the SPI-dominated system. After ultrasound treatment, the small, uniform size of co-aggregates and the decrease in potential led to an increase in the aggregation rate and formation of dense particles, consistent with an increase in gelation rate and texture properties. Excessively fast aggregation generated coarse chains and more pores. Still, the exposure of free sulfhydryl groups assisted the gel structure units to form a compact network through disulfide bonding. On the whole, the study could provide theoretical support for a deeper understanding on the interaction mechanism and gelation of composite proteins.


Subject(s)
Gels , Soybean Proteins , Gels/chemistry , Kinetics , Soybean Proteins/chemistry , Glycine max/chemistry , Ultrasonic Waves , Egg White/chemistry , Protein Aggregates , Egg Proteins/chemistry
18.
Food Chem ; 445: 138720, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38359570

ABSTRACT

The tendency of ovotransferrin (OVT) to unfold and aggregate under 60 °C severely restricted sterilization temperature during egg processing. Searching for efficient strategies to improve OVT thermal stability is essential for improving egg product quality and processing suitability. Here, we investigated the effect of sulfate polysaccharide (dextran sulfate, DS) on heat-induced aggregation of OVT. We found that DS can effectively suppress amorphous aggregation of OVT at pH 7.0 after heating. Strikingly, the addition of 5 µM DS fully suppressed insoluble aggregates formation of 0.5 mg/mL OVT. Structure analysis confirmed that DS preserves nearly the entire secondary and tertiary structure of OVT during heating. The steric hindrance effect arising from strong electrostatic interactions between OVT and DS, coupled with reduced OVT hydrophobicity, is the underlying mechanism in suppressing protein-protein interactions, thus enhancing thermal stability. These findings suggest DS could act as protein stabilizers and chaperones, enhancing the thermostability of heat-sensitive proteins.


Subject(s)
Conalbumin , Hot Temperature , Conalbumin/chemistry , Dextran Sulfate , Temperature , Static Electricity
19.
J Agric Food Chem ; 72(8): 4100-4115, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373195

ABSTRACT

Wound healing is a multiphase process with a complex repair mechanism; trauma-repairing products with safety and high efficiency have a great market demand. Egg white peptides (EWP) have various physiological regulatory functions and have been proven efficient in ameliorating skin damage. However, their underlying regulation mechanism has not been revealed. This study further evaluated the EWP ameliorating mechanism by conducting a full-thickness skin wound model. Results demonstrated that EWP administration significantly inhibited the expression of pro-inflammatory and shortened the inflammatory phase. Besides, EWP can accelerate the secretion of growth factors (PDGF, VEGF, and TGF-ß1) in skin tissue, significantly increasing the regeneration of granulation tissue and endothelium in the proliferation phase, thereby promoting wound healing. After 400 mg/kg EWP interventions for 13 days postoperation, the wound healing rate reached 90%. The combination of transcriptomic and proteomic analyses demonstrated the ameliorating efficiency effects of EWP on wound healing. EWP mainly participates in the functional network with the PI3K-AKT signaling pathway as the core to accelerate wound healing. These findings suggest a promising EWP-based strategy for accelerating wound healing.


Subject(s)
Proto-Oncogene Proteins c-akt , Wound Healing , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Egg White , Cell Proliferation , Cell Movement , Peptides/pharmacology , Gene Expression Profiling
20.
PLoS One ; 19(2): e0297121, 2024.
Article in English | MEDLINE | ID: mdl-38349935

ABSTRACT

BACKGROUND: Heart failure (HF) is the last stage in the progression of various cardiovascular diseases. Although it is documented that CD151 contributes to regulate the myocardial infarction, the function of CD151 on HF and involved mechanisms are still unclear. METHOD AND RESULTS: In the present study, we found that the recombinant adeno-associated virus (rAAV)-mediated endothelial cell-specific knockdown of CD151-transfected mice improved transverse aortic constriction (TAC)-induced cardiac function, attenuated myocardial hypertrophy and fibrosis, and increased coronary perfusion, whereas overexpression of the CD151 protein aggravated cardiac dysfunction and showed the opposite effects. In vitro, the cardiomyocytes hypertrophy induced by PE were significantly improved, while the proliferation and migration of cardiac fibroblasts (CFs) were significantly reduced, when co-cultured with the CD151-silenced endothelial cells (ECs). To further explore the mechanisms, the exosomes from the CD151-silenced ECs were taken by cardiomyocyte (CMs) and CFs, verified the intercellular communication. And the protective effects of CD151-silenced ECs were inhibited when exosome inhibitor (GW4869) was added. Additionally, a quantitative proteomics method was used to identify potential proteins in CD151-silenced EC exosomes. We found that the suppression of CD151 could regulate the PPAR signaling pathway via exosomes. CONCLUSION: Our observations suggest that the downregulation of CD151 is an important positive regulator of cardiac function of heart failure, which can regulate exosome-stored proteins to play a role in the cellular interaction on the CMs and CFs. Modulating the exosome levels of ECs by reducing CD151 expression may offer novel therapeutic strategies and targets for HF treatment.


Subject(s)
Exosomes , Heart Failure , Mice , Animals , Myocytes, Cardiac/metabolism , Endothelial Cells , Down-Regulation , Exosomes/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Heart Failure/genetics , Heart Failure/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...