Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Luminescence ; 39(5): e4778, 2024 May.
Article in English | MEDLINE | ID: mdl-38772865

ABSTRACT

To establish a new method for detecting crystal violet (CV), a harmful dye, herein, a genre of novel biomass carbon dots (CDs) was synthesized via a microwave method and employed as a fluorescent probe, in which water spinach and polyethylene glycol (PEG) performed as raw materials. Based on the inner filter effect (IFE) between the luminescent CDs and CV, the blue emission of this probe at 430 nm could be quenched by CV. Hence, a new strategy was proposed to selectively determine CV in aquaculture ambient. Moreover, under the optimal experiment conditions, this method showed a good linearity between the concentration of CV (c) and fluorescence quenching rate (ΔF/F0) in the concentration range of 4-200 µmol/L with the corresponding correlation coefficient (r) and the detection limit of 0.997 and 710 nmol/L, respectively. With advantages of environmental protectivity, sensitivity, affordability, and user-friendliness, the facilely fabricated CDs could be successfully applied in detecting CV in aquaculture samples, providing a technical foundation for monitoring the pollution of CV and ensuring the quality and safety of aquatic products.


Subject(s)
Biomass , Carbon , Fluorescent Dyes , Gentian Violet , Microwaves , Quantum Dots , Gentian Violet/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Fluorescence , Polyethylene Glycols/chemistry
2.
Anal Methods ; 16(18): 2948-2958, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38669009

ABSTRACT

Herein, a novel type of phosphorus and iron-doped carbon dot (P,Fe-CD) with outstanding peroxidase activity and excellent fluorescence performance was hydrothermally synthesized to colorimetrically and fluorimetrically detect tannic acid (TA). In the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, the P,Fe-CDs could oxidize colorless TMB to a blue oxidation product (oxTMB) resulting in an increased value of absorbance. Simultaneously, the fluorescence intensity of P,Fe-CDs at 430 nm could be quenched owing to the fluorescence resonance energy transfer (FRET) between P,Fe-CDs and the generated oxTMB. Meanwhile, after adding the TA to the system containing TMB, H2O2 and P,Fe-CDs, the value of absorbance could be decreased and the fluorescence could be recovered because of the reduction reaction between TA and oxTMB. Therefore, fluorescence intensity and value of absorbance could be applied to quantitatively detect TA with good linearities between the concentration of TA and the fluorescence intensity/value of absorbance (0.997 and 0.997 for the colorimetric signal and fluorimetric one, respectively) and low limits of detection (0.093 µmol L-1 and 0.053 µmol L-1 for the colorimetry and the fluorimetry, respectively), which was successfully applied to the detection of TA in red wines. Moreover, we applied a smartphone-assisted method to the point-of-care detection of TA with accurate results, providing a new technique for TA detection and food quality monitoring.


Subject(s)
Carbon , Quantum Dots , Tannins , Wine , Tannins/chemistry , Wine/analysis , Carbon/chemistry , Quantum Dots/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Colorimetry/methods , Peroxidase/chemistry , Peroxidase/metabolism , Limit of Detection , Fluorescence Resonance Energy Transfer/methods , Benzidines/chemistry , Oxidation-Reduction , Polyphenols
3.
J Fluoresc ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642300

ABSTRACT

Herein, a visual and luminescent dual-mode (colorimetric and fluorometric) method for the detection of P-phenylenediamine (PPD) in hair dye was successfully established based on cerium-nitrogen co-doped carbon dots (Ce, N-CDs) that displayed remarkable luminescence and peroxidase activity. Ce, N-CDs catalyzed H2O2 to produce superoxide anion, which then oxidized the colorless 3,3,5,5-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB), capable of quenching the fluorescence through fluorescence resonance energy transfer (FRET) between Ce, N-CDs and oxTMB. The reducing properties of PPD could reduce oxTMB back to TMB, leading to a decrease in the absorption intensity of oxTMB and a fluorescence recovery of Ce, N-CDs. As a result, the quantitative detection of PPD could be achieved by measuring the absorption values of oxTMB and the fluorescence signal of Ce, N-CDs. The detection limits for PPD were calculated as 0.36 µM and 0.10 µM for colorimetry and fluorimetry, respectively. Furthermore, smartphone application (ColorPicker) capable of measuring the RGB value of the color was utilized in the detection system, facilitating on-site quantitative detection. This approach effectively shortens the detection time and simplifies the operation, offering a powerful and convenient tool for real-time monitoring of PPD.

4.
Anal Methods ; 16(14): 2077-2084, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38511294

ABSTRACT

Herein, we present a paper-based POCT sensor based on lactate dehydrogenase-mediated alginate gelation combined with visual distance reading and smartphone-assisted colorimetric dual-signal analysis to determine the concentration of L-lactate in yogurt samples. In this research, L-lactate was transformed into pyruvate by lactate dehydrogenase. Pyruvate then triggered the gelation of a sol mixture, increasing the viscosity (ηs) of the mixture, which was shown as a decrease in the diffusion diameter on the paper-based sensor. In addition, protons from pyruvate accelerated the degradation of Rhodamine B, causing color fading of the mixture, which was analyzed using RGB analysis application software. Under optimal experimental conditions, the linear ranges of visual distance reading and smartphone-assisted colorimetric analysis were 0.1-15 µM and 0.3-15 µM and the detection limits were 0.03 µM and 0.07 µM, respectively. As a proof-of-concept application, we exploited the paper-based sensor to determine the concentration of L-lactate in yogurt samples. The results from the dual-signal paper-based sensor were consistent with the ones from HPLC analysis. In short, this study developed a simple, convenient, cost-effective, and feasible method for the quantitative detection of L-lactate in real samples.


Subject(s)
Colorimetry , Reading , Smartphone , Organic Chemicals , Pyruvic Acid , Alginates , L-Lactate Dehydrogenase , Lactates
5.
Anal Methods ; 16(6): 837-845, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38230997

ABSTRACT

In this study, we developed a simple and sensitive colorimetric sensing method for the detection of UO22+, which was built to release MB from the molybdenum disulfide with a phosphate group (MoS2-PO4) gated mesoporous silica nanoparticles functionalized phosphate group (MSN-PO4) with UO22+ chelating. In the presence of UO22+, MoS2-PO4 can be effectively adsorbed onto the surface of MSN-PO4 based on the coordination chemistry for strong affinity between the P-O bond and UO22+. The adsorbed MoS2-PO4 was then utilized as an ideal gate material to control the release of signal molecules (MB) entrapped within the pores of MSN-PO4, resulting in a detectable decrease in the absorption peak at 663 nm. This colorimetric sensing demonstrated the advantages of simplicity and easy manipulation and exhibited a linear response to the concentration of UO22+ within the range of 0.02-0.2 µM. The detection limit of UO22+ was determined to be 0.85 nM, which was lower than the limit (130 nmol L-1) set by the US Environmental Protection Agency. Furthermore, the proposed colorimetric sensing method has been utilized to determine UO22+ in samples of Xiangjiang River and tap water, and a high recovery rate was achieved. This method shows promising potential in preventing and controlling environmental pollution.

6.
Cell Signal ; 113: 110959, 2024 01.
Article in English | MEDLINE | ID: mdl-37918465

ABSTRACT

BACKGROUND: Irisin, a myokine derived from proteolytic cleavage of the fibronectin type III domain-containing protein 5 (FNDC5) protein, is crucial in protecting tissues and organs from ischemia-reperfusion (I/R) injury. However, the underlying mechanism of its action remains elusive. In this study, we investigated the expression patterns of genes associated with FNDC5 knockout to gain insights into its molecular functions. METHODS: We employed a mouse model of skeletal muscle I/R injury with FNDC5 knockout to examine the transcriptional profiles using RNA sequencing. Differentially expressed genes (DEGs) were identified and subjected to further analyses, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) network analysis, and miRNA-transcription factor network analysis. The bioinformatics findings were validated using qRT-PCR and Western blotting. RESULTS: Comparative analysis of skeletal muscle transcriptomes between wild-type (WT; C57BL/6), WT-I/R, FNDC5 knockout (KO), and KO-I/R mice highlighted the significance of FNDC5 in both physiological conditions and I/R injury. Through PPI network analysis, we identified seven key genes (Col6a2, Acta2, Col4a5, Fap, Enpep, Mmp11, and Fosl1), which facilitated the construction of a TF-hub genes-miRNA regulatory network. Additionally, our results suggested that the PI3K-Akt pathway is predominantly involved in FNDC5 deletion-mediated I/R injury in skeletal muscle. Animal studies revealed reduced FNDC5 expression in skeletal muscle following I/R injury, and the gastrocnemius muscle with FNDC5 knockout exhibited larger infarct size and more severe tissue damage after I/R. Moreover, Western blot analysis confirmed the upregulation of Col6a2, Enpep, and Mmp11 protein levels following I/R, particularly in the KO-I/R group. Furthermore, FNDC5 deletion inhibited the PI3K-Akt signaling pathway. CONCLUSION: This study demonstrates that FNDC5 deletion exacerbates skeletal muscle I/R injury, potentially involving the upregulation of Col6a2, Enpep, and Mmp11. Additionally, the findings suggest the involvement of the PI3K-Akt pathway in FNDC5 deletion-mediated skeletal muscle I/R injury, providing novel insights into the molecular mechanisms underlying FNDC5's role in this pathological process.


Subject(s)
MicroRNAs , Reperfusion Injury , Mice , Animals , Matrix Metalloproteinase 11/genetics , Matrix Metalloproteinase 11/metabolism , Transcriptome , Fibronectins/genetics , Fibronectins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Transcription Factors/metabolism , Reperfusion Injury/metabolism , Reperfusion , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Anal Methods ; 16(2): 244-252, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38105765

ABSTRACT

Mercury is a highly toxic element that is widely present in all types of environmental media and can accumulate in living organisms. Prolonged exposure to high levels of mercury can lead to brain damage and death, so the detection of mercury is of great importance. In this study, a cost-effective and easy-to-operate electrochemical sensing method was successfully developed based on an amino-functionalized titanium-based MXene (NH2-Ti3C2Tx) for the rapid and selective detection of Hg2+ that could have a coordination effect with the -NH2 group of NH2-Ti3C2Tx to promote the efficient accumulation of Hg2+. In this strategy, the NH2-Ti3C2Tx was first modified on glassy carbon electrodes (GCE) to fabricate the electrochemical sensor. Benefiting from the excellent electrical conductivity, abundant active sites, and strong adsorption capacity performance of the NH2-Ti3C2Tx, the NH2-Ti3C2Tx modified GCE (NH2-Ti3C2Tx/GCE) exhibited satisfactory selectivity and enhanced square wave anodic stripping voltammetry (SWASV) measurement for the rapid detection of trace amounts of Hg2+ in aqueous solutions. The electrochemical sensor was found to be capable of detecting Hg2+ with a low detection limit of 8.27 nmol L-1 and a linear range of 0.5 µmol L-1 to 50 µmol L-1. The response time of the electrochemical sensing method was 308 s. In addition, the electrochemical sensing method has good selectivity, repeatability and stability, and multiple heavy metal ions have no effect on its detection, with repeatability and stability RSDs of 1.68% and 1.43%, respectively. Furthermore, the analysis of practical water samples demonstrated that the developed method was highly practical for the actual determination of Hg2+ with recoveries in the range of 99.22-101.90%.


Subject(s)
Mercury , Metals, Heavy , Mercury/analysis , Mercury/chemistry , Metals, Heavy/analysis , Water/chemistry , Ions , Carbon/chemistry
8.
BMC Musculoskelet Disord ; 24(1): 935, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042803

ABSTRACT

BACKGROUND: Hyperuricemia can lead to synovial hyperplasia in the wrist. In severe cases, it can lead to the deposition of gouty stone in the carpal tunnel, resulting in increased pressure in the carpal tunnel and compression of the median nerve to cause carpal tunnel syndrome (CTS), which is called gouty carpal tunnel syndrome (GCTS). As for the surgical treatment of gouty carpal tunnel syndrome, scholars have different opinions on whether it is necessary to remove the superficial flexor tendon. The purpose of this study was to compare the clinical efficacy of trimming and resection of the diseased superficial flexor tendon in the treatment of gouty carpal tunnel syndrome. METHODS: Clinical data were collected from May 2016 to July 2021 from 10 patients (13 affected wrists) diagnosed with gouty carpal tunnel syndrome and classified into two groups according to the surgical modality: the diseased portion of the gout-eroded superficial finger tendon was trimmed in 9 wrists, and the diseased superficial finger flexor tendon was excised in 4 wrists. Values related to flexion and extension functions, 2-PD, DASH, BCTQ, VAS and recurrence in the affected fingers were compared between the two groups as well as before and after surgery in each group. RESULTS: All affected limbs used were cleared of gouty stones, finger numbness improved, no skin necrosis occurred, and all incisions healed at stage I. At follow-up (13.58 ± 5.53 months), there was no significant difference between groups in flexion and extension function, 2-PD, DASH, BCTQ, and VAS with respect to the affected fingers, and patients in both groups improved significantly before and after surgery. Treatment of only one wrist involved trimming to remove lesion-affected portions of tendon, which reappeared 1 year after surgery, and there was one case of poor recovery from greater piriformis muscle atrophy in both procedures. CONCLUSION: Regarding surgical treatment of patients with gouty carpal tunnel syndrome in which the gouty stone has invaded the superficial flexor tendons of the fingers, the diseased superficial flexor tendons can be selectively excised, and the postoperative mobility of the affected fingers may not be impaired.


Subject(s)
Carpal Tunnel Syndrome , Gout , Humans , Fingers , Wrist , Gout/complications , Gout/surgery , Tendons/surgery , Tendons/physiology
10.
Biosensors (Basel) ; 13(10)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37887111

ABSTRACT

Herein, an ultrasensitive DNAzyme-based fluorescence biosensor for detecting Cu2+ was designed using the cascade signal amplification strategy, coupling λ-exonuclease-assisted target recycling and mismatched catalytic hairpin assembly (MCHA). In the designed detection system, the target, Cu2+, can activate the Cu2+-dependent DNAzyme to cause a cleavage reaction, releasing ssDNA (tDNA). Then, tDNA binds to hairpin DNA (H0) with an overhanging 5'-phosphorylated terminus to form dsDNA with a blunt 5'-phosphorylated terminus, which activates the dsDNA to be digested by λ-Exo and releases tDNA along with another ssDNA (iDNA). Subsequently, the iDNA initiates MCHA, which can restore the fluorescence of carboxyfluorescein (FAM) previously quenched by tetramethylrhodamine (TAMRA), resulting in a strong fluorescent signal. Furthermore, MCHA efficiently improves the signal-to-noise ratio of the detection system. More importantly, tDNA recycling can be achieved with the λ-Exo digestion reaction to release more iDNA, efficiently amplifying the fluorescent signal and further improving the sensitivity to Cu2+ with a detection limit of 60 fM. The practical application of the developed biosensor was also demonstrated by detecting Cu2+ in real samples, proving it to be an excellent analytical strategy for the ultrasensitive quantification of heavy metal ions in environmental water sources.


Subject(s)
Biosensing Techniques , DNA, Catalytic , DNA, Catalytic/genetics , DNA , Exodeoxyribonucleases , DNA, Single-Stranded , Biosensing Techniques/methods , Limit of Detection , Nucleic Acid Amplification Techniques
11.
ACS Infect Dis ; 9(11): 2299-2305, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37843010

ABSTRACT

Exosomes have been implicated in vascular damage in recent research. The influence of dendritic cell-derived exosomes generated by Treponema pallidum (T. pallidum) on the inflammatory process of vascular cells was examined in this study. Human umbilical vein endothelial cells (HUVECs) were cocultured with exosomes isolated from dendritic cells induced by T. pallidum. Western blot and reverse transcription-quantitative real-time polymerase chain reaction were used to assess toll-like receptor 4 (TLR4) expression and the quantity of proinflammatory cytokines. The findings showed that the expression of TLR4 was considerably upregulated, and TLR4 knockdown dramatically reduced interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) production in exosome-treated HUVECs. Furthermore, TLR4 silencing reduced myeloid differentiation primary response protein 88 (MyD88) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) levels in exosome-treated HUVECs. Additionally, suppression of the activity of NF-κB with BAY11-7082, an NF-κB inhibitor, also reduced the exosome-treated inflammatory response. Our results suggested that dendritic cell-derived exosomes stimulated by T. pallidum induced endothelial cell inflammation, and the TLR4/MyD88/NF-κB signal axis was activated, significantly increasing IL-1ß, IL-6, and TNF-α expression. This may have a significant role in the vascular inflammatory response in syphilis, which would contribute to the understanding of the pathogenesis of syphilis and the host immunological response to T. pallidum.


Subject(s)
Exosomes , Syphilis , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Treponema pallidum/genetics , Treponema pallidum/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Exosomes/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction , Human Umbilical Vein Endothelial Cells/metabolism , Dendritic Cells
12.
Int J Antimicrob Agents ; 62(3): 106921, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37433387

ABSTRACT

OBJECTIVES: Carbapenem-resistant Klebsiella pneumoniae (CRKP) has widely disseminated globally, but its epidemiological characterization and clinical significance in paediatric patients are not well understood. In this study, we aimed to trace the dissemination dynamics of CRKP in the neonatal intensive care unit (NICU) of a tertiary hospital over a 10-y period. METHODS: We collected 67 non-duplicate K. pneumoniae species complex isolates from the NICU with patient metadata during 2009-2018. Antimicrobial susceptibility was determined by the agar or broth microdilution method. Risk factors for CRKP-positive patients were identified by univariate and multivariate analysis. Genetic characterization was dissected by whole-genome sequencing. Plasmid transmissibility, stability, and fitness were assessed. RESULTS: Thirty-four of 67 isolates (50.75%) were identified as CRKP. Premature rupture of membranes, gestational age, and invasive procedures are independent risk factors for CRKP-positive patients. The annual isolation rate of CRKP varied between 0% and 88.9%, and multiple clonal replacements were observed during the study period, which could be largely due to the division of the NICU. All but one CRKP produced IMP-4 carbapenemase, which was encoded by an IncN-ST7 epidemic plasmid, suggesting that the IncN-ST7 plasmid mediated the CRKP dissemination in the NICU over 10 y. The same plasmid was found in several CRKP isolates from adult patients, of which two ST17 isolates from the neurosurgery department shared a high homology with the ST17 isolates from the NICU, indicating possible cross-departmental transmission. CONCLUSION: Our study highlights the urgent need for infection control measures targeting high-risk plasmids like IncN-ST7.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Adult , Infant, Newborn , Humans , Child , Intensive Care Units, Neonatal , Klebsiella pneumoniae , Klebsiella Infections/epidemiology , beta-Lactamases/genetics , Plasmids/genetics , China/epidemiology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
13.
Anal Methods ; 15(26): 3251-3258, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37366585

ABSTRACT

L-Cysteine, widely used in medicine and the food industry, is of great essentiality to organisms and the food quality. Given that current detection approaches require exacting lab conditions and tedious sample treatment, there is a pressing demand for developing a method that possesses advantages of user friendliness, prominent performance, and cost-effectiveness. Herein, a self-cascade system was developed for the fluorescence detection of L-cysteine based on the ingenious performance of Ag nanoparticle/single-walled carbon nanotube nanocomposites (AgNP/SWCNTs) and DNA-templated Ag nanoclusters (DNA-AgNCs). The fluorescence of DNA-AgNCs could be quenched on account of the adsorption of DNA-AgNCs on AgNP/SWCNTs by π-π stacking. With the cooperation of Fe2+, AgNP/SWCNTs with oxidase and peroxidase-like activities could catalyze the oxidation of L-cysteine to produce cystine and hydrogen peroxide (H2O2) and then break the O-O bond of H2O2 to generate a hydroxyl radical (·OH), which could cleave the DNA strand into different sequence fragments which subsequently peeled off from the AgNP/SWCNTs, resulting in a "turn-on" fluorescence response. In this paper, AgNP/SWCNTs with multi-enzyme activities was synthesized enabling the reaction to proceed in just one step. The successful preliminary applications for the L-cysteine detection in pharmaceutical, juice beverage, and serum samples indicated that the developed method exhibited great potential in medical diagnosis, food monitoring, and the biochemical field, which also broadened the horizon for follow-up research.


Subject(s)
Metal Nanoparticles , Nanocomposites , Nanotubes, Carbon , Cysteine/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Hydrogen Peroxide/chemistry , Silver/chemistry , Nanocomposites/chemistry , DNA/chemistry
14.
Clin. transl. oncol. (Print) ; 25(6): 1629-1640, jun. 2023. graf
Article in English | IBECS | ID: ibc-221195

ABSTRACT

Purpose Breast cancer is one of the leading causes of tumor death worldwide in female, and the five-year overall survival of breast cancer patients remains poor. It is an urgent need to seek novel target for its treatment. Synaptotagmin 13 (SYT13) is a synaptic vesicle transporting protein that regulates the malignant phenotypes of various cancers. However, its role in breast cancer is still unclear. The current study aimed to investigate the effects of SYT13 on the progression of breast cancer. Methods Twenty-five pairs of breast cancer tissues and non-tumor tissues were obtained to assess the expression of SYT13. We manually modified the expression of SYT13 in MCF-7 and MDA-MB-231 cells. CCK-8 assay, EdU staining, and cell cycle analysis were carried out to measure the proliferated ability of cells. Annexin V/PI and TUNEL assays were used to detect the apoptotic ability of cells. Wound healing and transwell assays were employed to evaluate the migrated and invasive ability of breast cancer cells. Results The results revealed that the mRNA and protein levels of SYT13 were higher in breast cancer tissues and cell lines. Knockdown of SYT13 inhibited the cell proliferation and induced cell cycle arrest in G1 phase of MCF-7 cells by downregulating cyclin D1 and CDK4, as well as upregulating p21. The migration and invasion of MCF-7 cells were repressed by the loss of SYT13 via the gain of E-cadherin and the loss of vimentin. Overexpression of SYT13 in MDA-MB-231 cells led to the opposite effects. Silencing of SYT13 induced the apoptosis ability of MCF-7 cells by the upregulation of bax and the downregulation of bcl-2. Moreover, we found that SYT13 depletion suppressed the FAK/AKT signaling pathway. PF573228 (a FAK inhibitor) and MK2206 (an AKT inhibitor) reversed the SYT13 overexpression-induced promotion of proliferation, migration, and invasion of MDA-MB-231 cells (AU)


Subject(s)
Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , MCF-7 Cells , Signal Transduction , Synaptotagmins/genetics , Synaptotagmins/metabolism
15.
Int J Gen Med ; 16: 1455-1469, 2023.
Article in English | MEDLINE | ID: mdl-37101664

ABSTRACT

Purpose: Syphilis is a sexually transmitted bacterial infection caused by Treponema pallidum (T. pallidum), which can lead to chronic morbidity and adverse complications. In clinical practice, serofast status (SF) patients present with clinical symptoms that are very similar to those of healthy individuals or syphilis-cured patients, and often require prolonged follow-up for diagnosis. Currently, there is increasing interest in the potential of plasma exosome-derived miRNA as a biomarker for the detection of infectious diseases. In this study, we aimed to explore the diagnostic potential of miRNA in SF and its possible biological implications. Patients and Methods: Exosome-derived miRNAs were isolated from peripheral plasma samples obtained from 20 patients with secondary syphilis (SS), SF, serologically cured syphilis (SC), and healthy controls (HC), and differentially expressed miRNAs (DEmiRNAs) were identified by microarray analysis. Prediction of potential target genes, functional annotation, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were then performed. The expression of selected miRNAs was confirmed in 37 patients by quantitative reverse transcription polymerase chain reaction (RT-qPCR). A receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performance of these miRNAs in differentiating syphilis from HC or SC. Results: The expression profile of plasma exosome-derived miRNA was discovered in individuals with SF through microarray analysis. The targeted genes of DEmiRNAs were found to be involved in diverse biological processes according to GO and KEGG analysis, such as regulation of transcription, mitochondria, Golgi, immune system, apoptosis, Ras signaling pathway, etc. Using RT-qPCR validation, miR-1273g-3p, miR-4485-5p, miR-197-3p, and miR-1908-3p showed significant upregulation in patients with SF. These miRNAs exhibited a superior diagnostic ability, either individually or combined, to distinguish SF from SC or HC. Conclusion: The DEmiRNAs in plasma exosomes may play a role in the pathogenesis of SF and have the potential to become a noble and effective diagnostic method.

16.
Nat Commun ; 14(1): 2464, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117217

ABSTRACT

Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a point mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further associated with a hypervirulent sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid, respectively. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of genomic alterations convergent in a subpopulation with evolutionary advantages.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Point Mutation , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , China/epidemiology , Carbapenems , beta-Lactamases/genetics
17.
Anal Methods ; 15(12): 1569-1575, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36883525

ABSTRACT

Eco-friendly biomass carbon dots (CDs) with blue fluorescence emission were rapidly synthesized by a microwave method. Based on the inner filter effect (IFE) between oxytetracycline (OTC) and CDs, the fluorescence of CDs could be selectively quenched by OTC. Therefore, a simple and time-saving fluorescence sensing system for the detection of OTC was established. Under optimal experimental conditions, the concentration of OTC showed a good linear relationship with fluorescence quenching values (ΔF) in the range of 4.0-100.0 µmol L-1, a corresponding correlation coefficient (r) of 0.9975, and a detection limit of 0.12 µmol L-1. The method has the advantages of low cost, time-saving, and green synthesis that could be used for the determination of OTC. Moreover, possessing high sensitivity and specificity, this fluorescence sensing method was successfully applied for detecting OTC in milk, indicating its potential applications in food safety.


Subject(s)
Oxytetracycline , Quantum Dots , Carbon , Biomass , Limit of Detection
18.
Article in English | MEDLINE | ID: mdl-36833644

ABSTRACT

With the aging of China's population and the expansion of household debt, the health of the elderly has become an important social issue. Based on the 2018 China Family Panel Studies (CFPS) database, we explored the impact of household debt on the health of older adults and the mechanism of transmission. The Oprobit and IV-Oprobit models were employed for our analysis. Results: (1) Household debt had a significant negative impact on both the physical and mental health of older adults. (2) Female older adults were more sensitive to the impact of household debt. Additionally, a higher education level led to an increasing impact of debt on mental health, but physical health was only affected in the low-education group. (3) The impact of household debt had an inverted U-shape relationship with household income, indicating that, as household income increases, the impact on health level first rises and then reduces after peaking at a middling level of income. (4) According to the mechanism analysis, household debt affects the health of the elderly by causing them to return to work and reducing their medical expenditures. Considering the above conclusions, we put forward some policy implications to alleviate the health problems of the elderly.


Subject(s)
Health Status , Income , Humans , Female , Aged , China/epidemiology , Health Expenditures , Policy
19.
EMBO J ; 42(4): e111549, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36598329

ABSTRACT

YAP/TAZ transcriptional co-activators play pivotal roles in tumorigenesis. In the Hippo pathway, diverse signals activate the MST-LATS kinase cascade that leads to YAP/TAZ phosphorylation, and subsequent ubiquitination and proteasomal degradation by SCFß-TrCP . When the MST-LATS kinase cascade is inactive, unphosphorylated or dephosphorylated YAP/TAZ translocate into the nucleus to mediate TEAD-dependent gene transcription. Hippo signaling-independent YAP/TAZ activation in human malignancies has also been observed, yet the mechanism remains largely elusive. Here, we report that the ubiquitin E3 ligase HERC3 can promote YAP/TAZ activation independently of its enzymatic activity. HERC3 directly binds to ß-TrCP, blocks its interaction with YAP/TAZ, and thus prevents YAP/TAZ ubiquitination and degradation. Expression levels of HERC3 correlate with YAP/TAZ protein levels and expression of YAP/TAZ target genes in breast tumor cells and tissues. Accordingly, knockdown of HERC3 expression ameliorates tumorigenesis of breast cancer cells. Our results establish HERC3 as a critical regulator of the YAP/TAZ stability and a potential therapeutic target for breast cancer.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , Humans , Female , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , YAP-Signaling Proteins , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Ubiquitination , Breast Neoplasms/genetics , Ubiquitins/metabolism , Ligases/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism
20.
Clin Transl Oncol ; 25(6): 1629-1640, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36630025

ABSTRACT

PURPOSE: Breast cancer is one of the leading causes of tumor death worldwide in female, and the five-year overall survival of breast cancer patients remains poor. It is an urgent need to seek novel target for its treatment. Synaptotagmin 13 (SYT13) is a synaptic vesicle transporting protein that regulates the malignant phenotypes of various cancers. However, its role in breast cancer is still unclear. The current study aimed to investigate the effects of SYT13 on the progression of breast cancer. METHODS: Twenty-five pairs of breast cancer tissues and non-tumor tissues were obtained to assess the expression of SYT13. We manually modified the expression of SYT13 in MCF-7 and MDA-MB-231 cells. CCK-8 assay, EdU staining, and cell cycle analysis were carried out to measure the proliferated ability of cells. Annexin V/PI and TUNEL assays were used to detect the apoptotic ability of cells. Wound healing and transwell assays were employed to evaluate the migrated and invasive ability of breast cancer cells. RESULTS: The results revealed that the mRNA and protein levels of SYT13 were higher in breast cancer tissues and cell lines. Knockdown of SYT13 inhibited the cell proliferation and induced cell cycle arrest in G1 phase of MCF-7 cells by downregulating cyclin D1 and CDK4, as well as upregulating p21. The migration and invasion of MCF-7 cells were repressed by the loss of SYT13 via the gain of E-cadherin and the loss of vimentin. Overexpression of SYT13 in MDA-MB-231 cells led to the opposite effects. Silencing of SYT13 induced the apoptosis ability of MCF-7 cells by the upregulation of bax and the downregulation of bcl-2. Moreover, we found that SYT13 depletion suppressed the FAK/AKT signaling pathway. PF573228 (a FAK inhibitor) and MK2206 (an AKT inhibitor) reversed the SYT13 overexpression-induced promotion of proliferation, migration, and invasion of MDA-MB-231 cells. CONCLUSION: The results indicated that SYT13 promoted the malignant phenotypes of breast cancer cells by the activation of FAK/AKT signaling pathway.


Subject(s)
Breast Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Synaptotagmins , Female , Humans , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , MCF-7 Cells , Proto-Oncogene Proteins c-akt/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...