Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699811

ABSTRACT

The combination of magnetic resonance and fluorescence imaging in dual-modality imaging not only resolves the limitations of conventional single molecular imaging techniques in terms of specificity, sensitivity, and resolution but also expands the possibilities of molecular imaging techniques in diagnostics and therapeutic monitoring. Herein, a novel pH-responsive magnetic resonance/near-infrared fluorescence (MR/NIRF) nanoprobe (MnO2@BSA-Cy5.5) was successfully prepared by biomineralizing manganese dioxide (MnO2) with bovine serum albumin (BSA) while coupling fluorescent dye Cy5.5 for precise tumor detection and visualization. The synthesized MnO2@BSA-Cy5.5 nanoprobes were spherical particles of approximately 22.62 ± 3.31 nm in size, and their relaxation rates and T1 imaging signals were activated-enhanced in an acidic environment. Cytotoxicity assay and hematoxylin and eosin staining demonstrated that MnO2@BSA-Cy5.5 had low cytotoxicity and good biocompatibility. More importantly, active targeting via solid tumor albumin-binding protein receptor and enhanced permeability and retention effect, the probe can be specifically aggregated to the tumor site of the 8305C tumor model and exhibit excellent MR/NIRF imaging properties. Our results show that MnO2@BSA-Cy5.5 has high resolution and sensitivity in tumor imaging and is expected to be applied as an MR/NIRF contrast agent for accurate diagnosis of thyroid cancer.

2.
Front Chem ; 11: 1249472, 2023.
Article in English | MEDLINE | ID: mdl-37780983

ABSTRACT

The nano drug delivery system MnO2/CDDP@PDA-Cy5.5 was synthesized in this study to increase the efficacy of Cisplatin (CDDP) on thyroid cancer and alleviate the damage to normal tissue, with the aim of enhancing the anti-cancer efficacy, increasing the drug load, optimizing the control of drug release, and alleviating the systemic toxicity arising from drug off-target. On that basis, high efficacy and low toxicity win-win can be obtained. In this study, hollow manganese dioxide nanoparticles (MnO2 NPs) were prepared based on the template method. CDDP was loaded into the hollow cavity and then modified with polydopamine (PDA) and Cy5.5, with the aim of obtaining the nano-drug loading system MnO2/CDDP@PDA-Cy5.5 NPs. The NPs precisely delivered drugs by intelligently responding to the tumor microenvironment (TME). As indicated by the release curves, the NPs release CDDP rapidly by inducing the decomposition of PDA and MnO2 under acidic or redox conditions, and Magnetic resonance imaging (MRI) contrast agent Mn2+ was generated. The results of the in vivo MRI studies suggested that T1 contrast at the tumor site was notably enhanced under the Enhanced permeability and retention (EPR) effect. After the intravenous administration, the effective tumor accumulation exhibited by the NPs was confirmed by magnetic resonance imaging as a function of time. Compared with free CDDP, the in vivo therapeutic effect was remarkably increased. As indicated by the above-described results, MnO2/CDDP@PDA-Cy5.5 NPs is a drug delivery system exhibiting diagnostic and therapeutic functions.

3.
Article in English | MEDLINE | ID: mdl-35137675

ABSTRACT

PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) have been proved to be hazardous to health. Previous studies have focused on the distribution and sources of PAHs, whereas there is little knowledge of the damage to organs. Here we sought to investigate the pollution level and seasonal variation characteristics of PAHs in PM2.5 in Xi'an and assess the health risk, to establish a PAHs exposure model, and investigate the toxicological effects of PAHs on the respiratory and immune functions. A sub-chronic exposure model of PAHs was established by inhalation. The pathological changes of lung tissues were observed with a light microscope. Inflammatory reactions in alveolar lavage fluid were determined using the corresponding kit. The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were detected with enzyme linked immunosorbent assay (ELISA) kit; the proliferation of lymphocytes in spleen was detected with methyl tetrazolium (MTT); DNA immune damage was determined with DNA gel electrophoresis. The results showed that (1) the total concentration of 16 PAHs ranged from 41.1 to 387 ng/m3, with a mean value of 170 ng/m3, and the concentration of PAHs in PM2.5 was higher in winter than in other seasons. (2) The sources of PAHs in the atmosphere of Xi'an urban area were mainly coal combustion, and the equivalent carcinogenic concentration of PAHs in PM2.5 was 3.9 ng/m3. (3) Foreign body granuloma formation and inflammatory cell damage were observed in the lungs of rats infected with toxin; the levels of reactive oxygen species (ROS) and mobile device assistant (MDA) increased while nitric oxide synthase (NOS) decreased with the increase of dose; the expression levels of IL-6 and IL-8 elevated with the increase of toxin dose, showing an obvious dose-effect relationship; the level of PAHs damage to cells showed a dose-effect relationship. Sub-chronic exposure to PAHs could cause sustained inflammatory injury to the organism. Measures should be taken to counter the problems of PAHs in PM2.5 in Xi'an and relevant health promotion strategies should be developed.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Animals , Rats , Air Pollutants/toxicity , Air Pollutants/analysis , Environmental Monitoring/methods , Seasons , Interleukin-8 , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Interleukin-6/analysis , Spleen , Particulate Matter/toxicity , Particulate Matter/analysis , China , Risk Assessment
4.
Drug Deliv ; 30(1): 28-39, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36457288

ABSTRACT

Sorafenib (SRF) presents undesirable effects in clinical treatment, due to the lack of targeting, poor water solubility, and obvious side effects. In this study, we constructed a novel nanodrug carrier system for accurate and efficient delivery of SRF, improving its therapeutic effects and achieving tumor-specific imaging. The hollow mesoporous MnO2 (H-MnO2) nanoparticles equipped with target substance aptamers (APT) on the surface were used to load SRF for the first time. The resulting H-MnO2-SRF-APT could specifically bound to glypican-3 (GPC3) receptors on the surface of hepatocellular carcinoma (HCC), rapidly undergoing subsequent degradation under decreased pH conditions in the tumor microenvironment (TME) and releasing the loaded SRF. In this process, Mn2+ ions were used for T1-weighted magnetic resonance imaging simultaneously. The in vitro cell experiments indicated that H-MnO2-SRF-APT showed much more effects on the inhibition in the proliferation of Huh7 and HepG2 HCC cells than that of the non-targeted H-MnO2-SRF and free SRF. Besides, the in vivo results further confirmed that H-MnO2-SRF-APT could effectively inhibit the growth of xenograft tumors Huh7 in the naked mouse with good biosafety. In conclusion, H-MnO2-SRF-APT could significantly enhance the therapeutic effect of SRF and is expected to be a new way of diagnosis and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Manganese Compounds , Liver Neoplasms/drug therapy , Oxides , Oligonucleotides , Tumor Microenvironment , Glypicans
5.
J Appl Toxicol ; 41(11): 1803-1815, 2021 11.
Article in English | MEDLINE | ID: mdl-33782999

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are the most common contaminants in the air pollutants. Inhalation exposure to PAHs could increase the risk of respiratory disease, cardiovascular disease and even cancer. However, the biotoxicity of multi-component PAHs from atmospheric pollutants has been poorly studies. The main topic of this study was to investigate the PAHs mixture, which derived from atmospheric pollutants, induced toxic effects and inflammatory effects on human bronchial epithelial cells in vitro. The results showed that PAHs mixture could decrease the cell viability, increase the apoptosis rate, and induce cell cycle arrest at S-phase. Furthermore, the expression of inflammatory factors IL-1ß and IL-6 were increased and NF-κB signaling pathway was activated in PAHs mixture-treated cells. The findings of this study indicate that PAHs mixture-induced cytotoxicity and inflammation may be related to intracellular ROS generation and to the activated NF-κB signaling pathway.


Subject(s)
Air Pollutants/toxicity , Bronchi/drug effects , Cytotoxins/toxicity , Epithelial Cells/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Humans , Inflammation/chemically induced , Inhalation Exposure/adverse effects
6.
Acta Biochim Biophys Sin (Shanghai) ; 53(3): 283-293, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33677486

ABSTRACT

Blast lung injury (BLI) is the major cause of death in explosion-derived shock waves; however, the mechanisms of BLI are not well understood. To identify the time-dependent manner of BLI, a model of lung injury of rats induced by shock waves was established by a fuel air explosive. The model was evaluated by hematoxylin and eosin staining and pathological score. The inflammation and oxidative stress of lung injury were also investigated. The pathological scores of rats' lung injury at 2 h, 24 h, 3 days, and 7 days post-blast were 9.75±2.96, 13.00±1.85, 8.50±1.51, and 4.00±1.41, respectively, which were significantly increased compared with those in the control group (1.13±0.64; P<0.05). The respiratory frequency and pause were increased significantly, while minute expiratory volume, inspiratory time, and inspiratory peak flow rate were decreased in a time-dependent manner at 2 and 24 h post-blast compared with those in the control group. In addition, the expressions of inflammatory factors such as interleukin (IL)-6, IL-8, FosB, and NF-κB were increased significantly at 2 h and peaked at 24 h, which gradually decreased after 3 days and returned to normal in 2 weeks. The levels of total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase were significantly decreased 24 h after the shock wave blast. Conversely, the malondialdehyde level reached the peak at 24 h. These results indicated that inflammatory and oxidative stress induced by shock waves changed significantly in a time-dependent manner, which may be the important factors and novel therapeutic targets for the treatment of BLI.


Subject(s)
Blast Injuries/metabolism , Lung Injury/metabolism , Lung/metabolism , NF-kappa B/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-fos/metabolism , Animals , Blast Injuries/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Lung Injury/pathology , Male , Rats , Rats, Sprague-Dawley
7.
Chin J Traumatol ; 23(5): 249-257, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32917472

ABSTRACT

PURPOSE: Blast lung injury (BLI) is the most common damage resulted from explosion-derived shock wave in military, terrorism and industrial accidents. However, the molecular mechanisms underlying BLI induced by shock wave are still unclear. METHODS: In this study, a goat BLI model was established by a fuel air explosive power. The key genes involved in were identified. The goats of the experimental group were fixed on the edge of the explosion cloud, while the goats of the control group were 3 km far away from the explosive environment. After successful modeling for 24 h, all the goats were sacrificed and the lung tissue was harvested for histopathological observation and RNA sequencing. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis were performed to identify the main enriched biological functions of differentially expressed genes (DEGs). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the consistency of gene expression. RESULTS: Of the sampled goat lungs, 895 genes were identified to be significantly differentially expressed, and they were involved in 52 significantly enriched GO categories. KEGG analysis revealed that DEGs were highly enriched in 26 pathways, such as cytokine-cytokine receptor interaction, antifolate resistance, arachidonic acid metabolism, amoebiasis and bile secretion, JAK-STAT, and IL-17 signaling pathway. Furthermore, 15 key DEGs involved in the biological processes of BLI were confirmed by qRT-PCR, and the results were consistent with RNA sequencing. CONCLUSION: Gene expression profiling provide a better understanding of the molecular mechanisms of BLI, which will help to set strategy for treating lung injury and preventing secondary lung injury induced by shock wave.


Subject(s)
Blast Injuries/genetics , Gene Expression Profiling/methods , High-Energy Shock Waves/adverse effects , Lung Injury/genetics , Transcriptome , Animals , Blast Injuries/etiology , Disease Models, Animal , Goats , Lung Injury/etiology , Male , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
8.
Onco Targets Ther ; 13: 5145-5153, 2020.
Article in English | MEDLINE | ID: mdl-32606735

ABSTRACT

AIM: Low-temperature plasma (LTP) has potential applications in cancer therapy. Herein, we explored the molecular mechanisms of proliferation inhibition induced by LTP. METHODS: LTP was generated by a helium atmospheric-pressure plasma jet and used to treat A549 and H1299 cells. CCK-8 and cell apoptosis assays were performed to evaluate the effects of LTP treatment on A549 and H1299 cells. The qRT-PCR was performed to measure the expression of miR-203a after treating with LTP. CCK-8, colony formation, cell apoptosis assays, and Western blotting were performed to analyse the function of miR-203a in the development of lung cancer. Dual-luciferase assay and Western blotting were used to probe the relationship between miR-203a and BIRC5, and gene silencing using si-BIRC5 was carried out to explore the effect of knocking down BIRC5 on lung cancer cells. RESULTS: We found that LTP significantly suppressed proliferation and promoted apoptosis in A549 and H1299 cells. The miR-203a expression was increased after cells were treated with LTP. The miR-203a expression was downregulated among lung cancer tissue samples, and overexpression of miR-203a suppressed cell growth and induced apoptosis in lung cancer cells. We showed that miR-203a targeted BIRC5. Moreover, silencing of BIRC5 caused proliferation inhibition and induced apoptosis in lung cancer cells. CONCLUSION: Our study revealed that LTP inhibited proliferation and induced apoptosis in A549 and H1299 cells through the miR-203a/BIRC5 axis. These findings showed that LTP could potentially be used to treat lung cancer.

9.
Water Sci Technol ; 79(6): 1184-1194, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31070598

ABSTRACT

In this study, Eriochrome Black T (EBT) in water was decolorized by means of argon atmospheric pressure plasma jet (APPJ), which showed great decolorization performance. The results showed that the relatively high decolorization rate (approximately 80%) was obtained after plasma treatment for 6 min. Changes to some reactive oxygen and nitrogen species (RONS) in the liquid phase were detected. The contents of peroxide, HO·, O2 -·, and NO· in the plasma-treated EBT solution were much less than those in the activated water. The roles of H2O2 and HO· in the decolorization of EBT solution were explored by evaluating the effects of their scavengers, and by exploring the direct effect of H2O2. The results indicated that reactive oxygen species (ROS), especially HO· and O2 -·, played significant roles in the decolorization of the EBT solution. Analysis of degradation by-products indicated that plasma discharge could destroy the azo bond first and gradually break the aromatic rings of EBT molecules into small molecular compounds.


Subject(s)
Atmospheric Pressure , Azo Compounds/chemistry , Hydrogen Peroxide , Water Pollutants, Chemical/chemistry , Water Purification/methods , Azo Compounds/analysis , Nitrogen , Water Pollutants, Chemical/analysis
10.
Curr Med Sci ; 38(1): 107-114, 2018 Feb.
Article in English | MEDLINE | ID: mdl-30074159

ABSTRACT

Low-temperature plasma (LTP) has shown great promise in wound healing, although the underlying mechanism remains poorly understood. In the present study, an argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro and skin wounds in BALB/c mice. The in vitro analysis revealed that treatment of fibroblasts with LTP for 15 s resulted in a significant increase in cell proliferation, secretion of epidermal growth factor (EGF) and transforming growth factor-ßi (TGF-ßi), production of intracellular reactive oxygen species (ROS), and the percentage of cells in S phase, protein expression of phosphorylated p65 (P-p65) and cyclinD1, but a noted decrease in the protein expression of inhibitor kappa B (IκB). The in vitro experiments demonstrated that 30-s LTP treatment enhanced the number of fibroblasts and the ability of collagen synthesis, while 50-s treatment led to the opposite outcomes. These results suggested that LTP treatment promotes the fibroblast proliferation in wound healing by inducing the generation of ROS, upregulating the expression of P-p65, downregulating the expression of IκB, and activating the NF-κB signaling pathway and consequently altering cell cycle progression (increased DNA synthesis in S phage).


Subject(s)
Cell Proliferation , Fibroblasts/drug effects , Plasma Gases/pharmacology , Signal Transduction , Wound Healing , Animals , Cell Cycle , Cell Line , Collagen/metabolism , Cyclin D1/metabolism , Epidermal Growth Factor/metabolism , Fibroblasts/physiology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/metabolism
11.
Sci Rep ; 7(1): 11698, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916796

ABSTRACT

The potential applications of low temperature plasma (LTP) in wound healing have aroused the concern of many researchers. In this study, an argon atmospheric pressure plasma jet was applied to generate LTP for treatment of murine fibroblast cell (L929) cultured in vitro to investigate the effect of NF-κB pathway on fibroblast proliferation. The results showed that, compared with the control, L929 cells treated with plasma for less than 20 s had significant increases of proliferation; the productions of intracellular ROS, O2- and NO increased with prolongation of LTP treatment time; NF-κB pathway was activated by LTP in a proper dose range, and the expression of cyclinD1 in LTP-treated cells increased with the same trend as cell proliferation. After RNA interference to block p65 expression, with the same treatment time, RNAi-treated cells proliferated more slowly and expressed less cyclinD1 than normal cells. Furthermore, pretreatment with N-acetyl-L-cysteine (NAC) markedly prevented the plasma-induced changes in cells. In conclusion, the proliferation of L929 cells induced by LTP was closely related to NF-κB signaling pathway, which might be activated by appropriate level of intracellular ROS. These novel findings can provide some theoretical reference of LTP inducing cell proliferation and promoting wound healing.


Subject(s)
Cold Temperature , Cyclin D1/metabolism , Fibroblasts/cytology , NF-kappa B/metabolism , Plasma/physiology , Animals , Cell Line , Cell Proliferation , Mice , Reactive Oxygen Species/metabolism , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...