Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37239160

ABSTRACT

Cathpesin B is a multi-functional protease that plays numerous roles in physiology and pathophysiology. We hypothesized that actin cytoskeleton proteins that are substrates of cathepsin B, various lipids, and kinases that are regulated by lipids would be down-regulated in the kidney of cathepsin B knockout mice. Here, we show by Western blot and densitometric analysis that the expression and proteolysis of the actin cytoskeleton proteins myristoylated alanine-rich C-kinase substrate (MARCKS) and spectrin are significantly reduced in kidney cortex membrane fractions of cathepsin B knockout mice compared to C57B6 wild-type control mice. Lipidomic results show that specific lipids are increased while other lipids, including lysophosphatidylcholine (LPC) species LPC (16:0), LPC (18:0), LPC (18:1), and LPC (18:2), are significantly decreased in membrane fractions of the kidney cortex from Cathepsin B null mice. Protein Kinase C (PKC) activity is significantly lower in the kidney cortex of cathepsin B knockout mice compared to wild-type mice, while calcium/calmodulin-dependent protein kinase II (CaMKII) activity and phospholipase D (PLD) activity are comparable between the two groups. Together, these results provide the first evidence of altered actin cytoskeleton organization, membrane lipid composition, and PKC activity in the kidneys of mice lacking cathepsin B.

2.
Endocrinology ; 164(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36763043

ABSTRACT

Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors with limited curative treatment options outside of surgical resection. Patients with mutations in succinate dehydrogenase subunit B (SDHB) are at an increased risk of malignant and aggressive disease. As cation channels are associated with tumorigenesis, we studied the expression and activity of cation channels from the Degenerin superfamily in a progenitor cell line derived from a human PCC. hPheo1 wild-type (WT) and SDHB knockdown (KD) cells were studied to investigate whether epithelial sodium channels (ENaC) and acid-sensing ion channels (ASIC) are regulated by the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). First, we performed targeted metabolomic studies and quantified changes in glycolysis pathway intermediates and citric acid cycle intermediates using hPheo1 WT cells and SDHB KD cells. Next, we performed protein biochemistry and electrophysiology studies to characterize the protein expression and activity, respectively, of these ion channels. Our western blot experiments show both ENaC alpha and ASIC1/2 are expressed in both hPheo1 WT and SDHB KD cells, with lower levels of a cleaved 60 kDa form of ENaC in SDHB KD cells. Single-channel patch clamp studies corroborate these results and further indicate channel activity is decreased in SDHB KD cells. Additional experiments showed a more significant decreased membrane potential in SDHB KD cells, which were sensitive to amiloride compared to WT cells. We provide evidence for the differential expression and activity of ENaC and ASIC hybrid channels in hPheo1 WT and SDHB KD cells, providing an important area of investigation in understanding SDHB-related disease.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Humans , Epithelial Sodium Channels/metabolism , Acid Sensing Ion Channels/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Cations/metabolism , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism
3.
Biomedicines ; 11(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36830842

ABSTRACT

Diabetic nephropathy is the primary cause of morbidity in type 2 diabetes mellitus (T2DM) patients. New data indicate that hypertension, a common comorbidity in T2DM, can worsen outcomes of diabetic nephropathy. While metformin is a commonly prescribed drug for treating type 2 diabetes, its blood pressure regulating ability is not well documented. The aim of this study was to investigate the effect of metformin on normalizing blood pressure in salt-loaded hypertensive diabetic db/db mice. Sixteen-week-old male and female diabetic db/db mice were individually placed in metabolic cages and then randomized to a control vehicle (saline) or metformin treatment group. We evaluated the blood pressure reducing ability of metformin in salt-induced hypertension and progression of nephropathy in db/db mice. We observed that metformin- normalized systolic blood pressure in hypertensive diabetic mice. Mechanistically, metformin treatment reduced renal cathepsin B expression. Low cathepsin B expression was associated with reduced expression and activity of the epithelial sodium channel (ENaC), sodium retention, and thus control of hypertension. In addition, we identified that urinary extracellular vesicles (EVs) from the diabetic mice are enriched in cathepsin B. Compared to treatment with urinary EVs of vehicle-treated hypertensive diabetic mice, the amiloride-sensitive transepithelial current was significantly attenuated upon exposure of renal collecting duct cells to urinary EVs isolated from metformin-treated db/db mice or cathepsin B knockout mice. Collectively, our study identifies a novel blood pressure reducing role of metformin in diabetic nephropathy by regulating the cathepsin B-ENaC axis.

4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674924

ABSTRACT

In addition to inhibiting renal glucose reabsorption and allowing for glucose excretion, the sodium/glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin may be efficacious in treating various comorbidities associated with type 2 diabetes mellitus (T2DM). The molecular mechanisms by which dapagliflozin exerts its beneficial effects are largely unknown. We hypothesized dapagliflozin treatment in the diabetic kidney alters plasma membrane lipid composition, suppresses extracellular vesicle (EV) release from kidney cells, and disrupts lipid rafts in proximal tubule cells. In order to test this hypothesis, we treated diabetic db/db mice with dapagliflozin (N = 8) or vehicle (N = 8) and performed mass spectrometry-based lipidomics to investigate changes in the concentrations of membrane lipids in the kidney cortex. In addition, we isolated urinary EVs (uEVs) from urine samples collected during the active phase and the inactive phase of the mice and then probed for changes in membrane proteins enriched in the EVs. Multiple triacylglycerols (TAGs) were enriched in the kidney cortex membrane fractions of vehicle-treated diabetic db/db mice, while the levels of multiple phosphatidylethanolamines were significantly higher in similar mice treated with dapagliflozin. EV concentration and size were lesser in the urine samples collected during the inactive phase of dapagliflozin-treated diabetic mice. In cultured mouse proximal tubule cells treated with dapagliflozin, the lipid raft protein caveolin-1 shifted from less dense fractions to more dense sucrose density gradient fractions. Taken together, these results suggest dapagliflozin may regulate lipid-mediated signal transduction in the diabetic kidney.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Phosphatidylethanolamines/metabolism , Kidney/metabolism , Glucose/metabolism , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/metabolism , Kidney Cortex/metabolism , Mice, Inbred Strains
5.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675169

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the COVID-19 disease. COVID-19 viral infection can affect many cell types, including epithelial cells of the lungs and airways. Extracellular vesicles (EVs) are released by virtually all cell types, and their packaged cargo allows for intercellular communication, cell differentiation, and signal transduction. Cargo from virus-infected cells may include virally derived metabolites, miRNAs, nucleic acids, and proteins. We hypothesized that COVID-19 plasma EVs can induce the formation of signaling platforms known as lipid rafts after uptake by normal human small airway epithelial cells (SAECs). Circulating EVs from patients with or without COVID-19 were characterized by nanoparticle tracking analysis, Western blotting using specific antibodies, and transmission electron microscopy. Primary cultures of normal human small airway epithelial cells were challenged with EVs from the two patient groups, and lipid raft formation was measured by fluorescence microscopy and assessed by sucrose density gradient analysis. Collectively, our data suggest that circulating EVs from COVID-19-infected patients can induce the formation of lipid rafts in normal human small airway epithelial cells. These results suggest the need for future studies aimed at investigating whether the increased density of lipid rafts in these cells promotes viral entry and alteration of specific signaling pathways in the recipient cells.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , Epithelial Cells , Extracellular Vesicles/metabolism , Membrane Microdomains/metabolism
6.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36430437

ABSTRACT

The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied. The objective of this study was to investigate mechanisms of EnNaC regulation associated with NPRC activation in human aortic endothelial cells (hAoEC). EnNaC protein expression and activity was attenuated after treating hAoEC with the NPRC agonist cANF compared to vehicle, as demonstrated by Western blotting and patch clamping studies, respectively. NPRC knockdown studies using siRNA's corroborated the specificity of EnNaC regulation by NPRC activation mediated by ligand binding. The concentration of multiple diacylglycerols (DAG) and the activity of protein kinase C (PKC) was augmented after treating hAoEC with cANF compared to vehicle, suggesting EnNaC activity is down-regulated upon NPRC ligand binding in a DAG-PKC dependent manner. The reciprocal cross-talk between NPRC activation and EnNaC inhibition represents a feedback mechanism that presumably is involved in the regulation of endothelial function and aortic stiffness.


Subject(s)
Endothelial Cells , Protein Kinase C , Humans , Endothelial Cells/metabolism , Protein Kinase C/metabolism , Natriuretic Peptide, C-Type/metabolism , Diglycerides/pharmacology , Diglycerides/metabolism , Ligands , Natriuretic Peptides/metabolism
7.
PLoS One ; 17(11): e0274598, 2022.
Article in English | MEDLINE | ID: mdl-36374911

ABSTRACT

INTRODUCTION: Primary focal segmental glomerulosclerosis (FSGS), a major cause of end-stage kidney disease (ESKD) in adolescents and young adults, is attributable to recognized genetic mutations in a minority of cases. For the majority with idiopathic primary FSGS, the cause of the disease is unknown. We hypothesize that extracellular vesicle (EVs), that carry information between podocytes and mesangial cells, may play a key role in disease progression. MATERIAL & METHODS: A total of 30 participants (20 primary nephrotic syndrome/ 10 healthy controls) were enrolled in this study. Primary nephrotic syndrome subjects were grouped based on pathologic diagnosis. The FSGS group was compared to healthy control subjects based on demographic and clinical findings. EVs were isolated from the urine of each group before being characterized by Western blotting, transmission electron microscopy, and nanoparticle tracking analysis. The effects of the EVs from each group on normal human mesangial cells and activation of certain pathways were then investigated. RESULTS: Based on demographic and clinical findings, mean serum creatinine was significantly higher in the FSGS group than the normal healthy control group. The mean size of the EVs in the FSGS group was significantly higher than the healthy control group. The mesangial cells that were challenged with EVs isolated from FSGS patients showed significant upregulation of STAT-3, PCNA, Ki67, and cell proliferation. DISCUSSION: Our data demonstrate that EVs from FSGS patients stimulate mesangial cell proliferation in association with upregulation of the phospho-STAT-3 pathway. Additional studies are planned to identify the molecular cargo within the EVs from FSGS patients that contribute to the pathogenesis of FSGS.


Subject(s)
Extracellular Vesicles , Glomerulosclerosis, Focal Segmental , Nephrotic Syndrome , Podocytes , Humans , Child , Adolescent , Glomerulosclerosis, Focal Segmental/pathology , Nephrotic Syndrome/pathology , Podocytes/metabolism , Extracellular Vesicles/metabolism , Cell Proliferation , STAT3 Transcription Factor/metabolism
8.
Biomolecules ; 13(1)2022 12 29.
Article in English | MEDLINE | ID: mdl-36671451

ABSTRACT

Hypertension may develop before or after the onset of diabetes and it is known to increase the risk of developing diabetic nephropathy. Alpha-1 antitrypsin (AAT) is a multi-functional protein with beneficial effects in various diseases but its role in reducing blood pressure in the diabetic kidney has not been thoroughly studied. Like blood pressure, epithelial sodium channels (ENaC) and its adaptor protein myristoylated alanine-rich C-kinase substrate (MARCKS) are regulated by circadian rhythms. Our hypothesis is that administration of human AAT (hAAT) reduces blood pressure in hypertensive diabetic mice by attenuating membrane expression of ENaC and its association with the actin cytoskeleton. First, we show hAAT administration results in reduced blood pressure in diabetic db/db mice compared to vehicle treatment in both the inactive and active cycles. Western blotting and immunohistochemistry analyses showed a reduction of ENaC and the actin cytoskeleton protein, MARCKS in the kidneys of diabetic db/db mice treated with hAAT compared to vehicle. hAAT treatment resulted in elevated amounts of extracellular vesicles present in the urine of diabetic db/db mice compared to vehicle treatment both in the inactive and active cycles. Multiple hexosylceramides, among other lipid classes increased in urinary EVs released from hAAT treated hypertensive diabetic mice compared to vehicle treated mice. Taken together, these data suggest hAAT treatment could normalize blood pressure in the diabetic kidney in a mechanism involving attenuation of renal ENaC and MARCKS protein expression and possibly ceramide metabolism to hexosylceramide in kidney cells.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hypertension , Animals , Humans , Mice , Blood Pressure , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Hypertension/drug therapy , Mice, Inbred Strains , Myristoylated Alanine-Rich C Kinase Substrate , Epithelial Sodium Channels/metabolism , Receptors, Adrenergic, alpha-1/metabolism
9.
Biomolecules ; 11(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34944449

ABSTRACT

Salt-sensitive hypertension resulting from an increase in blood pressure after high dietary salt intake is associated with an increase in the production of reactive oxygen species (ROS). ROS are known to increase the activity of the epithelial sodium channel (ENaC), and therefore, they have an indirect effect on sodium retention and increasing blood pressure. Extracellular vesicles (EVs) carry various molecules including proteins, microRNAs, and lipids and play a role in intercellular communication and intracellular signaling in health and disease. We investigated changes in EV lipids, urinary electrolytes, osmolality, blood pressure, and expression of renal ENaC and its adaptor protein, MARCKS/MARCKS Like Protein 1 (MLP1) after administration of the antioxidant Tempol in salt-sensitive hypertensive 129Sv mice. Our results show Tempol infusion reduces systolic blood pressure and protein expression of the alpha subunit of ENaC and MARCKS in the kidney cortex of hypertensive 129Sv mice. Our lipidomic data show an enrichment of diacylglycerols and monoacylglycerols and reduction in ceramides, dihydroceramides, and triacylglycerols in urinary EVs from these mice after Tempol treatment. These data will provide insight into our understanding of mechanisms involving strategies aimed to inhibit ROS to alleviate salt-sensitive hypertension.


Subject(s)
Antioxidants/administration & dosage , Cyclic N-Oxides/administration & dosage , Extracellular Vesicles/chemistry , Hypertension/drug therapy , Lipids/urine , Sodium Chloride, Dietary/adverse effects , Animals , Antioxidants/pharmacology , Calmodulin-Binding Proteins/metabolism , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Epithelial Sodium Channels/metabolism , Extracellular Vesicles/drug effects , Gene Expression Regulation/drug effects , Hypertension/chemically induced , Hypertension/urine , Infusion Pumps , Lipidomics , Mice , Microfilament Proteins/metabolism , Reactive Oxygen Species/metabolism , Spin Labels
10.
Front Physiol ; 12: 710313, 2021.
Article in English | MEDLINE | ID: mdl-34630137

ABSTRACT

Human alpha-1 antitrypsin (hAAT) is a versatile protease inhibitor, but little is known about its targets in the aldosterone-sensitive distal nephron and its role in electrolyte balance and blood pressure control. We analyzed urinary electrolytes, osmolality, and blood pressure from hAAT transgenic (hAAT-Tg) mice and C57B/6 wild-type control mice maintained on either a normal salt or high salt diet. Urinary sodium, potassium, and chloride concentrations as well as urinary osmolality were lower in hAAT-Tg mice maintained on a high salt diet during both the active and inactive cycles. hAAT-Tg mice showed a lower systolic blood pressure compared to C57B6 mice when maintained on a normal salt diet but this was not observed when they were maintained on a high salt diet. Cathepsin B protein activity was less in hAAT-Tg mice compared to wild-type controls. Protein expression of the alpha subunit of the sodium epithelial channel (ENaC) alpha was also reduced in the hAAT-Tg mice. Natriuretic peptide receptor C (NPRC) protein expression in membrane fractions of the kidney cortex was reduced while circulating levels of atrial natriuretic peptide (ANP) were greater in hAAT-Tg mice compared to wild-type controls. This study characterizes the electrolyte and blood pressure phenotype of hAAT-Tg mice during the inactive and active cycles and investigates the mechanism by which ENaC activation is inhibited in part by a mechanism involving decreased cathepsin B activity and increased ANP levels in the systemic circulation.

11.
Am J Physiol Cell Physiol ; 321(3): C535-C548, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34288724

ABSTRACT

Extracellular vesicles (EVs) contain biological molecules and are secreted by cells into the extracellular milieu. The endothelial sodium channel (EnNaC) plays an important role in modulating endothelial cell stiffness. We hypothesized EVs secreted from human aortic endothelial cells (hAoECs) positively regulate EnNaC in an autocrine-dependent manner. A comprehensive lipidomic analysis using targeted mass spectrometry was performed on multiple preparations of EVs isolated from the conditioned media of hAoECs or complete growth media of these cells. Cultured hAoECs challenged with EVs isolated from the conditioned media of these cells resulted in an increase in EnNaC activity when compared with the same concentration of media-derived EVs or vehicle alone. EVs isolated from the conditioned media of hAoECs but not human fibroblast cells were enriched in MARCKS-like protein 1 (MLP1). The pharmacological inhibition of the negative regulator of MLP1, protein kinase C, in cultured hAoECs resulted in an increase in EV size and release compared with vehicle or pharmacological inhibition of protein kinase D. The MLP1-enriched EVs increased the density of actin filaments in cultured hAoECs compared with EVs isolated from human fibroblast cells lacking MLP1. We quantified 141 lipids from glycerolipids, glycerophospholipids, and sphingolipids in conditioned media EVs that represented twice the number found in control media EVs. The concentrations of sphingomyelin, lysophosphatidylcholine and phosphatidylethanolamine were higher in conditioned media EVs. These results provide the first evidence for EnNaC regulation in hAoECs by EVs and provide insight into a possible mechanism involving MLP1, unsaturated lipids, and bioactive lipids.


Subject(s)
Calmodulin-Binding Proteins/genetics , Culture Media, Conditioned/pharmacology , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Lysophosphatidylcholines/metabolism , Microfilament Proteins/genetics , Phosphatidylethanolamines/metabolism , Sphingomyelins/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Aorta/cytology , Aorta/metabolism , Autocrine Communication , Calmodulin-Binding Proteins/metabolism , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Extracellular Vesicles/chemistry , Gene Expression , Glycerophospholipids/metabolism , Humans , Lipidomics/methods , Lysophosphatidylcholines/pharmacology , Microfilament Proteins/metabolism , Phosphatidylethanolamines/pharmacology , Primary Cell Culture , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Sphingomyelins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...