Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 442
Filter
1.
ISME J ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709871

ABSTRACT

Chirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear. Here, we developed a novel approach using chiral phosphorus-reagent labeling to separate DHPS enantiomers. Our findings demonstrated that at least one enantiomer of DHPS is present in marine diatoms and coccolithophores, and that both enantiomers are widespread in marine environments. A novel chiral-selective DHPS catabolic pathway was identified in marine Roseobacteraceae strains, where HpsO and HpsP dehydrogenases at the gateway to DHPS catabolism act specifically on R-DHPS and S-DHPS, respectively. R-DHPS is also a substrate for the dehydrogenase HpsN. All three dehydrogenases generate stable hydrogen bonds between the chirality-center hydroxyls of DHPS and highly conserved residues, and HpsP also form coordinate-covalent bonds between the chirality-center hydroxyls and Zn2+, which determines the mechanistic basis of strict stereoselectivity. We further illustrated the role of enzymatic promiscuity in the evolution of DHPS metabolism in Roseobacteraceae and SAR11. This study provides the first evidence of chirality's involvement in phytoplankton-bacteria metabolic currencies, opening a new avenue for understanding the ocean organosulfur cycle.

2.
Nano Lett ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717299

ABSTRACT

Double-layer quantum systems are promising platforms for realizing novel quantum phases. Here, we report a study of quantum oscillations (QOs) in a weakly coupled double-layer system composed of a large-angle twisted-double-bilayer graphene (TDBG). We quantify the interlayer coupling strength by measuring the interlayer capacitance from the QOs pattern at low temperatures, revealing electron-hole asymmetry. At high temperatures when SdHOs are thermally smeared, we observe resistance peaks when Landau levels (LLs) from two moiré minivalleys are aligned, regardless of carrier density; eventually, it results in a 2-fold increase of oscillating frequency in D, serving as compelling evidence of the magneto-intersub-band oscillations (MISOs) in double-layer systems. The temperature dependence of MISOs suggests that electron-electron interactions play a crucial role and the scattering times obtained from MISO thermal damping are correlated with the interlayer coupling strength. Our study reveals intriguing interplays among Landau quantization, moiré band structure, and scatterings.

3.
Angew Chem Int Ed Engl ; : e202407340, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748468

ABSTRACT

Exploration of expanded porphyrins with unprecedented reactivities has remained important. Here [22]pentaphyrins(2.0.1.1.0) were synthesized as a constitutional isomer of sapphyrin by acid-catalyzed cyclization of 1,14-dibromo-5,10-diaryltripyrrin with 1,2-di(pyrro-2-ly)ethenes. These pentaphyrins display roughly planar structures and varying aromaticities depending upon the vinylene structures. The 19,20-ditolyl pentaphyrin gave an N-fused product and an unprecedented pyrrole-rearranged product, depending upon the oxidation conditions. Remarkably, upon the metalation with CuCl, the N-fused product and the pyrrole-rearranged product afforded an inner b-b coupled face-to-face CuII complex dimer and an outer b-b coupled lateral CuII complex dimer, respectively, in fairly good yields. Further, [22]pentaphyrin(2.0.1.1.0) fused with a NiII porphyrin was effectively dimerized upon oxidation with MnO2 to give a 16-16' directly linked dl-dimer.

4.
J Phys Chem A ; 128(14): 2737-2742, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38566323

ABSTRACT

The trend toward further miniaturization of micronano antiferromagnetic (AFM) spintronic devices has led to a strong demand for low-dimensional materials. The assembly of AFM clusters to produce such materials is a potential pathway that promotes studies on such clusters. In this work, we report on the discovery of the AFM Cr2Snx (x = 3-20) clusters with a stepwise growth at the density functional theory (DFT) level. In comparison, the two Cr atoms tend to stay together and be buried by Sn atoms, forming endohedral structures with one Cr atom encapsulated at size 9 and finally forming a full-encapsulated structure at size 17. Each successive cluster size is composed of its predecessor with an extra Sn atom adsorbed onto the face, giving evidence of stepwise growth. All these Cr2Snx (x = 3-20) clusters are antiferromagnets, except for the triplet-state ferrimagnetic Cr2Sn11, and all their singly negatively and positively charged ions are ferromagnets. The found stable Cr2Sn17 cluster can dimerize, yielding dimers and trimers without noticeably distorting the geometrical structure and magnetic properties of each of its constituent cluster monomers, making it possible as a building block for AFM materials.

5.
Article in English | MEDLINE | ID: mdl-38634749

ABSTRACT

A Gram-stain-negative bacterium, designated XZ-24T, was isolated from sediment of a river in Mianyang city, Sichuan province, PR China. Cells (1.0-2.0 µm long and 0.4-0.5 µm in width) were strictly aerobic, non-spore-forming, rod shaped, prosthecate and motile by means of a polar flagellum. Growth occurred at 10-37 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-3.0 % (w/v) NaCl (optimum 1.0 % NaCl). The results of phylogenetic analysis based on genomes and 16S rRNA gene sequences indicated that XZ-24T formed a distinct phyletic branch within the family Caulobacteraceae and was most closely related to members of the genera Brevundimonas, Caulobacter and Phenylobacterium with 95.3-96.5 % 16S rRNA gene sequence similarities. The average amino acid identities (AAI) between XZ-24T and species of the family Caulobacteraceae were 47.0-64.5 %, which were below the genus boundary (70 %). The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω7c 11-methyl and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), the isoprenoid quinone was Q-10, and the major polar lipids were 1,2-di-O-acyl-3-O-α-d-glucopyranuronosyl glycerol; 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1→4)-α-d glucopyranuronosyl] glycerol and phosphatidylglycerol. The genome size of XZ-24T was 2.64 Mb with a DNA G+C content of 68.9 %. On the basis of the evidence presented in this study, strain XZ-24T represents a novel species of a novel genus in the family Caulobacteraceae, for which the name Peiella sedimenti gen. nov., sp. nov. (Type strain XZ-24T=CCTCC AB 20 23 094T=KCTC 8038T) is proposed.


Subject(s)
Caulobacteraceae , Rivers , Base Composition , Fatty Acids/chemistry , Glycerol , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
6.
Article in English | MEDLINE | ID: mdl-38639856

ABSTRACT

This systematic review aims to identify the association between prenatal exposure to air pollutants and allergic diseases in children, focusing on specific pollutants, timing of exposure, and associated diseases. We searched PubMed, Scopus, and Web of Science for English articles until May 1, 2023, examining maternal exposure to outdoor air pollutants (PM1, PM2.5, PM10, NO, NO2, SO2, CO, and O3) during pregnancy and child allergic diseases (atopic dermatitis (AD), food allergy (FA), asthma (AT) and allergic rhinitis (AR)/hay fever (HF)). The final 38 eligible studies were included in the meta-analysis. Exposure to PM2.5 and NO2 during pregnancy was associated with the risk of childhood AD, with pooled ORs of 1.34 (95% confidence interval (CI), 1.10-1.63) and 1.10 (95%CI, 1.05-1.15) per 10 µg/m3 increase, respectively. Maternal exposure to PM1, PM2.5, and NO2 with a 10 µg/m3 increase posed a risk for AT, with pooled ORs of 1.34 (95%CI, 1.17-1.54), 1.11 (95%CI, 1.05-1.18), and 1.07 (95%CI, 1.02-1.12), respectively. An increased risk of HF was observed for PM2.5 and NO2 with a 10 µg/m3 increase, with ORs of 1.36 (95%CI, 1.17-1.58) and 1.26 (95%CI, 1.08-1.48), respectively. Traffic-related air pollutants (TRAP), particularly PM2.5 and NO2, throughout pregnancy, pose a pervasive risk for childhood allergies. Different pollutants may induce diverse allergic diseases in children across varying perinatal periods. AT is more likely to be induced by outdoor air pollutants as a health outcome. More research is needed to explore links between air pollution and airway-derived food allergies.

7.
J Ultrasound Med ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581195

ABSTRACT

OBJECTIVES: Our study aims to investigate the impact of B-mode ultrasound (B-US) imaging, color Doppler flow imaging (CDFI), strain elastography (SE), and patient age on the prediction of molecular subtypes in breast lesions. METHODS: Totally 2272 multimodal ultrasound imaging was collected from 198 patients. The ResNet-18 network was employed to predict four molecular subtypes from B-US imaging, CDFI, and SE of patients with different ages. All the images were split into training and testing datasets by the ratio of 80%:20%. The predictive performance on testing dataset was evaluated through 5 metrics including mean accuracy, precision, recall, F1-scores, and confusion matrix. RESULTS: Based on B-US imaging, the test mean accuracy is 74.50%, the precision is 74.84%, the recall is 72.48%, and the F1-scores is 0.73. By combining B-US imaging with CDFI, the results were increased to 85.41%, 85.03%, 85.05%, and 0.84, respectively. With the integration of B-US imaging and SE, the results were changed to 75.64%, 74.69%, 73.86%, and 0.74, respectively. Using images from patients under 40 years old, the results were 90.48%, 90.88%, 88.47%, and 0.89. When images from patients who are above 40 years old, they were changed to 81.96%, 83.12%, 80.5%, and 0.81, respectively. CONCLUSION: Multimodal ultrasound imaging can be used to accurately predict the molecular subtypes of breast lesions. In addition to B-US imaging, CDFI rather than SE contribute further to improve predictive performance. The predictive performance is notably better for patients under 40 years old compared with those who are 40 years old and above.

8.
Chemosphere ; 356: 141911, 2024 May.
Article in English | MEDLINE | ID: mdl-38583539

ABSTRACT

Oxygen vacancies (OVs) have garnered significant interest for their role as active sites, enhancing the catalytic efficiency of various catalysts. Despite their widespread application in environmental purification processes, the generation of OVs conventionally depends on high-temperature conditions and strong reducing agents for the extraction of surface partial oxygen atoms from catalysts. In this work, bismuth oxybromide (BiOBr) nanosheets with varying levels of OVs were synthesized via a simple and effective solvothermal method. This novel method affords precise control over the conduction band (CB) and valence band (VB) positions of BiOBr. The presence of different OVs exhibited varying photocatalytic efficiencies in the degradation of bisphenol A (BPA) under visible light irradiation, with higher levels of OVs resulting in superior photocatalytic performance. Furthermore, radical scavenger experiments demonstrated that superoxide oxides (O2•-) and holes (h+) were the primary reactive oxygen species for BPA degradation. Additionally, BiOBr-OVs exhibited excellent anti-interference and stability in water matrices containing diverse inorganic anions and organic compounds. This work provides a simple and effective approach for the fine-regulating of catalysts through interfacial defect engineering, paving the way for their practical application in environmental decontamination.


Subject(s)
Benzhydryl Compounds , Bismuth , Oxygen , Phenols , Benzhydryl Compounds/chemistry , Bismuth/chemistry , Phenols/chemistry , Catalysis , Oxygen/chemistry , Water Pollutants, Chemical/chemistry , Light , Photolysis
9.
Vet Microbiol ; 293: 110099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677125

ABSTRACT

Japanese encephalitis virus (JEV) is a pathogen with a substantial impact on both livestock and human health. However, the critical host factors in the virus life cycle remain poorly understood. Using a library comprising 123411 small guide RNAs (sgRNAs) targeting 19050 human genes, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screen to identify essential genes for JEV replication. By employing knockout or knockdown techniques on genes, we identified eleven human genes crucial for JEV replication, such as prolactin releasing hormone receptor (PRLHR), activating signal cointegrator 1 complex subunit 3 (ASCC3), acyl-CoA synthetase long chain family member 3 (ACSL3), and others. Notably, we found that PRLHR knockdown blocked the autophagic flux, thereby inhibiting JEV infection. Taken together, these findings provide effective data for studying important host factors of JEV replication and scientific data for selecting antiviral drug targets.


Subject(s)
CRISPR-Cas Systems , Encephalitis Virus, Japanese , RNA, Guide, CRISPR-Cas Systems , Virus Replication , Virus Replication/genetics , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Humans , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Library , Animals , Host-Pathogen Interactions/genetics , Encephalitis, Japanese/virology , Cell Line , HEK293 Cells , Clustered Regularly Interspaced Short Palindromic Repeats
10.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38564334

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Subject(s)
Caspase 1 , Escherichia coli Infections , Nucleoside-Diphosphate Kinase , Pyroptosis , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/pathogenicity , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Mice , Caspase 1/metabolism , Nucleoside-Diphosphate Kinase/metabolism , Nucleoside-Diphosphate Kinase/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/metabolism , Escherichia coli Infections/pathology , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Humans , Female , Urinary Bladder/microbiology , Urinary Bladder/pathology , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Signal Transduction
11.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38682465

ABSTRACT

Vitamin E (VE) is a potent nutritional antioxidant that is critical in alleviating poultry oxidative stress. However, the hydrophobic nature and limited stability of VE restrict its effective utilization. Nanotechnology offers a promising approach to enhance the bioavailability of lipophilic vitamins. The objective of this experiment was to investigate the effects of different sources and addition levels of VE on the growth performance, antioxidant capacity, VE absorption site, and pharmacokinetics of Arbor Acres (AA) broilers. Three hundred and eighty-four 1-d-old AA chicks were randomly allocated into four groups supplemented with 30 and 75 IU/kg VE as regular or nano. The results showed that dietary VE sources had no significant impact on broiler growth performance. However, chickens fed 30 IU/kg VE had a higher average daily gain at 22 to 42 d and 1 to 42 d, and lower feed conversion ratio at 22 to 42 d than 75 IU/kg VE (P < 0.05). Under normal feeding conditions, broilers fed nano VE (NVE) displayed significantly higher superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) enzyme activities and lower malonic dialdehyde (MDA) concentration (P < 0.05). Similarly, NVE had a higher antioxidant effect in the dexamethasone-constructed oxidative stress model. It was found that nanosizing technology had no significant effect on the absorption of VE in the intestinal tract by examining the concentration of VE in the intestinal tract (P > 0.05). However, compared to broilers perfused with regular VE (RVE), the NVE group displayed notably higher absorption rates at 11.5 and 14.5 h (P < 0.05). Additionally, broilers perfused with NVE showed a significant increase in the area under the concentration versus time curve from zero to infinity (AUC0-∞), mean residence time (MRT0-∞), elimination half-life (t1/2z), and peak concentration (Cmax) of VE in plasma (P < 0.05). In summary, nanotechnology provides more effective absorption and persistence of VE in the blood circulation for broilers, which is conducive to the function of VE and further improves the antioxidant performance of broilers.


With the rapid development of intensive farming, factors such as high temperature, harmful gases, high-fat and high-protein diets, and changes in feeding methods have become causes of oxidative stress in animals. Studies have shown that oxidative stress decreases livestock feed intake and slows growth in animals, thereby affecting the quality of livestock products. Antioxidants and micronutrients are commonly added to animal feed to reduce the effects of oxidative stress. Since the progress in nanotechnology, nanovitamins have gained extensive recognition due to their novel qualities, including a high level of adsorption capacity and low toxicity. Therefore, the present study compared the effects of dietary supplementation with different sources of vitamin E (regular, RVE vs. nano, NVE) and varying inclusion levels on the growth performance, antioxidant capacity, VE absorption sites, and pharmacokinetics in AA broilers. The results indicated that supplementing broiler diets with NVE provides superior antioxidant benefits compared to RVE. This improvement is attributed to the enhanced absorption efficiency and extended half-life of NVE, both contributing to increased antioxidant performance of broilers.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Vitamin E , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Animal Feed/analysis , Diet/veterinary , Vitamin E/administration & dosage , Vitamin E/pharmacokinetics , Vitamin E/pharmacology , Dietary Supplements/analysis , Oxidative Stress/drug effects , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Animal Nutritional Physiological Phenomena , Male , Random Allocation
12.
Braz J Anesthesiol ; 74(3): 844501, 2024.
Article in English | MEDLINE | ID: mdl-38583586

ABSTRACT

INTRODUCTION: Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats. METHODS: A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg-1.min-1, and serial doses of apelin-13 (50, 150 and 450 µg.kg-1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay. RESULTS: Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05). CONCLUSION: Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.


Subject(s)
Bupivacaine , Cardiotoxicity , Intercellular Signaling Peptides and Proteins , Rats, Sprague-Dawley , Animals , Bupivacaine/toxicity , Rats , Male , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/administration & dosage , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Protein Kinase C/metabolism , Dose-Response Relationship, Drug , Anesthetics, Local/pharmacology , Disease Models, Animal , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/drug effects , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Apelin Receptors , Benzophenanthridines
14.
ISA Trans ; 147: 187-201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431455

ABSTRACT

To solve the position control problem of the induction motor with parameter perturbations, load disturbances, and modeling errors, a predefined-time position tracking optimization control method with prescribed performance is proposed. In practice, the rotor flux linkage of the induction motor can't be measured, and a predefined-time sliding mode observer (PTSMO) is applied to accurately estimate it. Additionally, predefined-time disturbance observers (PTDOs) are employed to identify the uncertainties in the motor system. The position and flux linkage controllers are then designed by integrating the predefined-time control approach with the prescribed performance function method, realizing accurate tracking control of the induction motor within a predefined time. Next, the adaptive genetic algorithm (AGA) and the improved particle swarm optimization (IPSO) technique are combined to optimize the designed controllers, enhancing the convergence rate and steady-state accuracy of the induction motor. Finally, comparative analyses through simulations and dSPACE simulated experiments validate the efficacy of the proposed control method, highlighting its applicability in practical motor systems.

15.
Org Lett ; 26(13): 2656-2661, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38526445

ABSTRACT

We disclose a photocatalytic strategy that simultaneously addresses the construction of trifluoromethylated quaternary carbon centers and the preparation of ß-CF3-enones through radical difunctionalization of α-CF3 alkenes with acyl chlorides. This method is characterized by its broad functional group compatibility, high efficiency, and atom economy. The versatility of this transformation is poised to broaden the applications of α-CF3 alkenes, providing new pathways for the rapid assembly of structurally diverse fluorinated compounds.

16.
Front Endocrinol (Lausanne) ; 15: 1284152, 2024.
Article in English | MEDLINE | ID: mdl-38501103

ABSTRACT

Background: Systemic inflammation and glucose metabolism have been closely related to the survival of cancer patients. Therefore, we aimed to evaluate whether preoperative glucose-to-lymphocyte ratio (GLR) can be used to predict the survival of cancer patients. Methods: We retrospectively examined 2172 cancer patients who underwent surgery from January 1, 2014, to December 31, 2016. There were 240 patients with non-small cell lung cancer (NSCLC), 378 patients with colorectal cancer (CRC), 221 patients with breast cancer (BC), 335 patients with gastric cancer (GC), 270 patients with liver cancer, 233 patients with esophageal cancer (EC), 295 patients with renal cancer, and 200 patients with melanoma. The formula for preoperative GLR calculation was as follows: GLR=glucose/lymphocyte count. The overall survival (OS) was estimated using the Kaplan-Meier method. The predictive factors for OS were determined using multivariate analysis. Results: The Kaplan-Meier analysis showed that the median survival time in the high-GLR group was much shorter than that of those in the low-GLR group for different cancers. Cox multivariate regression analysis reveals that preoperative GLR was an independent factor for predicting overall survival in different tumor types. Conclusion: Elevated preoperative GLR was remarkably associated with a poorer prognosis in patients with NSCLC, CRC, breast cancer, gastric cancer, kidney cancer, liver cancer, esophageal cancer, and melanoma. Preoperative GLR promises to be an essential predictor of survival for cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Esophageal Neoplasms , Liver Neoplasms , Lung Neoplasms , Melanoma , Stomach Neoplasms , Humans , Glucose , Retrospective Studies , Lung Neoplasms/pathology , Lymphocytes/pathology , Liver Neoplasms/pathology , Esophageal Neoplasms/pathology , Stomach Neoplasms/diagnosis , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology
17.
Article in English | MEDLINE | ID: mdl-38530752

ABSTRACT

A Gram-stain-positive bacterium, designated YN-L-19T, was isolated from a sludge sample collected from a pesticide-manufacturing plant. Cells of YN-L-19T were strictly aerobic, non-spore-forming, non-motile and ovoid-shaped. Colonies were small, smooth and yellow. Growth occurred at 10-37 °C (optimum, 30 °C), pH 5.0-9.0 (optimum, 7.0) and 0-3.0 % (w/v) NaCl (optimum 0.5 %). Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that YN-L-19T was affiliated to the family Microbacteriaceae and most closely related to Diaminobutyricimonas aenilata, Terrimesophilobacter mesophilus, Planctomonas deserti and Curtobacterium luteum. The major cellular fatty acids of YN-L-19T were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. The predominant menaquinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified lipid. The average amino acid identity values between strain YN-L-19T and the related strains were 57.9-61.9 %, which were below the genus boundary (70 %). On the basis of the evidence presented in this study, strain YN-L-19T represents a novel species of a new genus in the family Microbacteriaceae, for which the name Ruicaihuangia caeni gen. nov., sp. nov. (type strain YN-L-19T=CCTCC AB 2022401T= KCTC 49935T) is proposed.


Subject(s)
Actinomycetales , Fatty Acids , Fatty Acids/chemistry , Sewage , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , DNA, Bacterial/genetics , Base Composition , Peptidoglycan/chemistry , Gram-Positive Bacteria , Vitamin K 2/chemistry
18.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Article in English | MEDLINE | ID: mdl-38504590

ABSTRACT

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Subject(s)
Iron Overload , Isoflavones , Liver Diseases, Alcoholic , MAP Kinase Signaling System , Pueraria , Pueraria/chemistry , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/pathology , Animals , Iron Overload/drug therapy , Iron Overload/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , MAP Kinase Signaling System/drug effects , Male , Oxidative Stress/drug effects , Genistein/pharmacology , Genistein/chemistry , Mice , Apoptosis/drug effects
19.
Heliyon ; 10(3): e25317, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352789

ABSTRACT

Purpose: Diagnosing pulmonary embolism (PE) in older adults is relatively difficult because of the atypical clinical symptoms of PE in older adults accompanied by multiple complications. This study aimed to establish a nomogram model to better predict the occurrence of PE in older adults. Methods: Data were collected from older patients (≥65 years old) with suspected PE who were hospitalized between January 2012 and July 2021 and received confirmatory tests (computed tomographic pulmonary angiography or ventilation/perfusion scanning). The PE group and non-PE (control) group were compared using univariable and multivariable analyses to identify independent risk factors. A nomogram prediction model was constructed with independent risk factors and verified internally. The effectiveness of the nomogram model, Wells score, and revised Geneva score was assessed using the area under the receiver operating characteristic curve (AUC). Results: In total, 447 eligible older patients (290 PE patients and 157 non-PE patients) were enrolled. Logistic regression analysis revealed nine independent risk factors: smoking, inflammation, dyspnea, syncope, mean corpuscular hemoglobin concentration, indirect bilirubin, uric acid, left atrial diameter, and internal diameter of the pulmonary artery. The AUC, sensitivity, and specificity of the nomogram prediction model were 0.763 (95 % confidence interval, 0.721-0.802), 74.48 %, and 67.52 %, respectively. The nomogram showed superior AUC compared to the Wells score (0.763 vs. 0.539, P < 0.0001) and the revised Geneva score (0.763 vs. 0.605, P < 0.0001). Conclusions: This novel nomogram may be a useful tool to better recognize PE in hospitalized older adults.

20.
Pediatr Res ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307926
SELECTION OF CITATIONS
SEARCH DETAIL
...