Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 427: 127913, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34865906

ABSTRACT

Microplastics are an emerging and increasingly serious pollutant in freshwater environment, which have become a threat to freshwater organisms. However, whether microplastics interfere with the responses of organisms to their predators is still unclear. In this study, we investigated the effects of microplastics with tiny different particle size (diameter: 0.7 and 1 µm) on the anti-predation (Rhodeus ocellatus as the predator) defense responses of different body-sized cladocerans, Daphnia pulex and Moina macrocopa. Results showed that microplastics had a size-based inhibitory effect on the induced defense of both D. pulex and M. macrocopa. Specifically, 0.7 µm microplastics had stronger effects on reduced survival time, delayed maturation time, and decreased offspring numbers. In addition, the effects of microplastics also varied with different body-sized cladocerans, i.e. medium-sized cladoceran (D. pulex) were more sensitive than the small-sized one (M. macrocopa) regarding the maturation time. This study illustrated for the first time that the effect of microplastics on induced defense was related to cladoceran species and microplastics size, and further revealed the extensive negative effects of microplastics from the perspective of interspecific relationship.


Subject(s)
Cladocera , Microplastics , Animals , Daphnia , Plastics/toxicity , Predatory Behavior
2.
J Anim Sci ; 99(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34436591

ABSTRACT

Sirtuin 1 (SIRT1), an NAD-dependent protein deacetylase, plays a central role in the control of lipid metabolism in nonruminants. However, the role of SIRT1 in hepatic lipid metabolism in dairy cows with fatty liver is not well known. Thus, we used isolated primary bovine hepatocytes to determine the role of SIRT1 in protecting cells against oleic acid (OA)-induced steatosis. Recombinant adenoviruses to overexpress (AD-GFP-SIRT1-E) or knockdown (AD-GFP-SIRT1-N) SIRT1 were used for transduction of hepatocytes. Calf hepatocytes isolated from five female calves (1 d old, 30 to 40 kg) were used to determine both time required and the lowest dose of OA that could induce triacylglycerol (TAG) accumulation. Analyses indicated that 0.25 mM OA for 24 h was suitable to induce TAG accumulation. In addition, OA not only led to an increase in TAG, but also upregulated mRNA and protein abundance of sterol regulatory element-binding transcription factor 1 (SREBF1) and downregulated SIRT1 and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PPARGC1A). Thus, these in vitro conditions were deemed optimal for subsequent experiments. Calf hepatocytes were cultured and incubated with OA (0.25 mM) for 24 h, followed by adenoviral AD-GFP-SIRT1-E or AD-GFP-SIRT1-N transduction for 48 h. Overexpression of SIRT1 led to greater protein and mRNA abundance of SIRT1 along with fatty acid oxidation-related genes including PPARGC1A, peroxisome proliferator-activated receptor alpha (PPARA), retinoid X receptor α (RXRA), and ratio of phospho-acetyl-CoA carboxylase alpha (p-ACACA)/total acetyl-CoA carboxylase alpha (ACACA). In contrast, it resulted in lower protein and mRNA abundance of genes related to lipid synthesis including SREBF1, fatty acid synthase (FASN), apolipoprotein E (APOE), and low-density lipoprotein receptor (LDLR). The concentration of TAG decreased due to SIRT1 overexpression. In contrast, silencing SIRT1 led to lower protein and mRNA abundance of SIRT1, PPARGC1A, PPARA, RXRA, and greater protein and mRNA abundance of SREBF1, FASN, APOE, and LDLR. Further, those responses were accompanied by greater content of cellular TAG and total cholesterol (TC). Overall, data from these in vitro studies indicated that SIRT1 is involved in the regulation of lipid metabolism in calf hepatocytes subjected to an increase in the supply of OA. Thus, it is possible that alterations in SIRT1 abundance and activity in vivo contribute to development of fatty liver in dairy cows.


Subject(s)
Fatty Liver , Lipid Metabolism , Animals , Cattle , Fatty Liver/veterinary , Female , Hepatocytes/metabolism , Liver/metabolism , Oleic Acid/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
3.
J Hazard Mater ; 420: 126616, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329078

ABSTRACT

Removal of harmful cyanobacteria is an extremely urgent task in global lake management and protection. Conventional measures are insufficient for simultaneously removing cyanobacteria and hazardous cyanotoxin, efficient and environmental-friendly measures are therefore particularly needed. Herbivorous protozoa have great potentials in controlling algae, however, large-sized colonial Microcystis is inedible for protozoa, which is a central problem to be solved. Therefore, in present study, a measure of protozoa grazing assisted by ultrasound was investigated in laboratory scale for eliminating harmful colonial Microcystis. The results showed that with ultrasound power and time increasing, the proportion of unicellular Microcystis increased significantly. With Ochromonas addition, approximately 80% of colonial Microcystis and microcystin was removed on day 4 under ultrasound power of 100 W for 15 min, while Ochromonas only reduced Microcystis by less than 20% without assistance of ultrasound. Moreover, when directly exposed to low-intensity ultrasound, Ochromonas showed strong resistance to ultrasound and were not inhibited in grazing Microcystis. Overall, ultrasound increases edible food for protozoa via collapsing Microcystis colonies and assists Ochromonas to remove Microcystis, thus intermittently collapsing colonial Microcystis using low-intensity ultrasound can significantly improve the removal efficiency of Microcystis by protozoa grazing, which provided a new insight in controlling harmful colonial Microcystis.


Subject(s)
Cyanobacteria , Microcystis , Lakes , Light , Microcystins
4.
J Cell Physiol ; 236(1): 405-416, 2021 01.
Article in English | MEDLINE | ID: mdl-32572960

ABSTRACT

Epigallocatechin-3-gallate (EGCG) plays a crucial role in hepatic lipid metabolism. However, the underlying regulatory mechanism of hepatic lipid metabolism by EGCG in canine is unclear. Primary canine hepatocytes were treated with EGCG (0.01, 0.1, or 1 µM) and BML-275 (an AMP-activated protein kinase [AMPK] inhibitor) to study the effects of EGCG on the gene and protein expressions associated with AMPK signaling pathway. Data showed that treatment with EGCG had greater activation of AMPK, as well as greater expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) along with upregulated messenger RNA (mRNA) abundance and protein abundance of PPARα-target genes. EGCG decreased the expression levels and transcriptional activity of sterol regulatory element-binding protein 1c (SREBP-1c) along with downregulated mRNA abundance and protein abundance of SREBP-1c target genes. Of particular interest, exogenous BML-275 could reduce or eliminate the effects of EGCG on lipid metabolism in canine hepatocytes. Furthermore, the content of triglyceride was significantly decreased in the EGCG-treated groups. These results suggest that EGCG might be a potential agent in preventing high-fat diet-induced lipid accumulation in small animals.


Subject(s)
AMP-Activated Protein Kinases/genetics , Catechin/analogs & derivatives , Hepatocytes/metabolism , Lipid Metabolism/genetics , Signal Transduction/genetics , Animals , Catechin/genetics , Cells, Cultured , Diet, High-Fat , Dogs , Down-Regulation/drug effects , Down-Regulation/genetics , Hepatocytes/drug effects , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , PPAR alpha/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Triglycerides/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
5.
Exp Ther Med ; 21(1): 20, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33235629

ABSTRACT

The aim of the present study was to investigate the immunoregulatory effects of Astragalus polysaccharide (APS) on RAW264.7 cells. The production of cytokines by RAW264.7 cells was analyzed using ELISA, while cell viability and optimal concentration of APS were assessed using the Cell Counting Kit-8 assay. In addition, the mRNA levels of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α were determined by reverse transcription-quantitative PCR analysis. The levels of co-stimulatory molecules and cell cycle distribution were assessed by flow cytometry. Electrophoretic mobility shift assay was used to determine the effects of APS on p65 expression. Compared with controls, APS enhanced the production of NO, the gene expression of TNF-α, IL-6 and iNOS and the protein levels of phosphorylated p65, p38, Jun N-terminal kinase and extracellular signal regulated kinase in RAW264.7 cells, whereas these effects of APS were alleviated by pyrrolidine dithiocarbamate. The results of the present study indicated that the immunoregulatory effects of APS are mediated, at least in part, via the activation of the NF-κB p65/MAPK signaling pathway.

7.
Front Cell Dev Biol ; 8: 245, 2020.
Article in English | MEDLINE | ID: mdl-32411699

ABSTRACT

Elevated plasma non-esterified fatty acid (NEFA) levels and hepatocytes damage are characteristics of ketosis in dairy cows. Oxidative stress is associated with the pathogenesis of NEFA-induced liver damage. However, the exact mechanism by which oxidative stress mediates NEFA-induced hepatocytes apoptosis and liver injury remains poorly understood. The results of the present study demonstrated that NEFA contribute to reactive oxygen species (ROS) generation, resulting in an imbalance between oxidative and antioxidant species, transcriptional activation of p53, transcriptional inhibition of nuclear factor E2-related factor 2 (Nrf2), loss of mitochondria membrane potential (MMP) and release of apoptosis-inducing factor (AIF) and cytochrome c (cyt c) into the cytosol, leading to hepatocytes apoptosis. Besides, NEFA triggered apoptosis in dairy cow hepatocytes via the regulation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), Bcl-2-associated X protein (Bax), B-cell lymphoma gene 2 (Bcl-2), caspase 9 and poly (ADP-ribose) polymerase (PARP). Pretreatment with the inhibitor SP600125 or PD98059 or the antioxidant N-acetylcysteine (NAC) revealed that NEFA-ROS-JNK/ERK-mediated mitochondrial signaling pathway plays a crucial role in NEFA-induced hepatocytes apoptosis. Moreover, the results suggested that the transcription factors p53 and Nrf2 function downstream of this NEFA-ROS-JNK/ERK pathway and are involved in NEFA-induced hepatocytes apoptosis. In conclusion, these findings indicate that the NEFA-ROS-JNK/ERK-mediated mitochondrial pathway plays an important role in NEFA-induced dairy cow hepatocytes apoptosis and strongly suggests that the inhibitors SP600125 and PD98059 and the antioxidant NAC may be developed as therapeutics to prevent hyperlipidemia-induced apoptotic damage in ketotic dairy cows.

SELECTION OF CITATIONS
SEARCH DETAIL