Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2400367, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704750

ABSTRACT

Phototherapy promotes anti-tumor immunity by inducing immunogenic cell death (ICD), However, the accompanying inflammatory responses also trigger immunosuppression, attenuating the efficacy of photo-immunotherapy. Herein, they co-assembled a cell-membrane targeting chimeric peptide C16-Cypate-RRKK-PEG8-COOH (CCP) and anti-inflammatory diclofenac (DA) to develop a nanodrug (CCP@DA) that both enhances the immune effect of phototherapy and weakens the inflammation-mediated immunosuppression. CCP@DA achieves cell membrane-targeting photodynamic and photothermal synergistic therapies to damage programmed death ligand 1 (PD-L1) and induce a strong ICD to activate anti-tumor response. Simultaneously, the released DA inhibits the cycoperoxidase-2 (COX-2)/prostaglandin E2 (PGE2) pathway in tumor cells to inhibit pro-tumor inflammation and further down-regulate PD-L1 expression to relieve the immunosuppressive microenvironment. CCP@DA significantly inhibited tumor growth and inflammation both in vitro and in vivo, while maintaining a potent anti-tumor immune response. Additionally, it exhibits excellent anti-metastatic capabilities and prolongs mouse survival time with a single dose and low levels of near-infrared (NIR) light exposure. This work provides a valuable strategy to control the therapy-induced inflammation for high-efficiency photoimmunotherapy.

2.
Small ; : e2311056, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377262

ABSTRACT

The poor efficiency and low immunogenicity of photodynamic therapy (PDT), and the immunosuppressive tumor microenvironment (ITM) lead to tumor recurrence and metastasis. In this work, TCPP-TER -Zn@RSV nanosheets (TZR NSs) that co-assembled from the endoplasmic reticulum (ER)-targeting photosensitizer TCPP-TER -Zn nanosheets (TZ NSs for short) and the autophagy promoting and indoleamine-(2, 3)-dioxygenase (IDO) inhibitor-like resveratrol (RSV) are fabricated to enhance antitumor PDT. TZR NSs exhibit improved therapeutic efficiency and amplified immunogenic cancer cell death (ICD) by ER targeting PDT and ER autophagy promotion. TZR NSs reversed the ITM with an increase of CD8+ T cells and reduce of immunosuppressive Foxp3 regulatory T cells, which effectively burst antitumor immunity thus clearing residual tumor cells. The ER-targeting TZR NSs developed in this paper presents a simple but valuable reference for high-efficiency tumor photodynamic immunotherapy.

3.
J Control Release ; 367: 248-264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272398

ABSTRACT

As a potential treatment strategy for low immunogenic triple negative breast cancer (TNBC), photodynamic therapy (PDT) induced antitumor immunotherapy is greatly limited by the immunosuppressive tumor microenvironment (ITM), especially the M2 phenotype tumor-associated macrophages (TAMs). The balance of arginine metabolism plays an important role in TAMs polarization. Herein, a multifunctional nanoplatform (defined as HN-HFPA) was employed to burst the anti-tumor immunity of TNBC post PDT by reeducating TAMs through interfering the TAMs-associated arginine metabolism. The L-arginine (L-Arg) was loaded in the hollow cavity of HN-HFPA, which could not only generate nitric oxide (NO) for tumor therapy, but also serve as a substrate of arginine metabolism pathway. As an inhibitor of arginases-1 (Arg-1) of M2 TAMs, L-norvaline (L-Nor) was modified to the hyaluronic acid (HA), and coated in the surface of HFPA. After degradation of HA by hyaluronidase in tumor tissue and GSH-mediated disintegration, HN-HFPA depleted intracellular GSH, produced remarkable reactive oxygen species (ROS) under light irradiation and released L-Arg to generate NO, which induced tumor immunogenic cell death (ICD). Real-time ultrasound imaging of tumor was realized taking advantage of the gas feature of NO. The L-Nor suppressed the Arg-1 overexpressed in M2, which skewed the balance of arginine metabolism and reversed the ITM with increased ratios of M1 and CD8+ T cells, finally resulted in amplified antitumor immune response and apparent tumor metastasis inhibition. This study remodeled ITM to strengthen immune response post PDT, which provided a promising treatment strategy for TNBC.


Subject(s)
Nanoparticles , Neoplasms , Triple Negative Breast Neoplasms , Humans , CD8-Positive T-Lymphocytes , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages , Immunotherapy , Arginine , Hyaluronic Acid , Immunosuppressive Agents , Nitric Oxide , Tumor Microenvironment , Cell Line, Tumor
4.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682882

ABSTRACT

Sulfur (S) is an essential mineral nutrient required for plant growth and development. Plants usually face temporal and spatial variation in sulfur availability, including the heterogeneous sulfate content in soils. As sessile organisms, plants have evolved sophisticated mechanisms to modify their gene expression and physiological processes in order to optimize S acquisition and usage. Such plasticity relies on a complicated network to locally sense S availability and systemically respond to S status, which remains poorly understood. Here, we took advantage of a split-root system and performed transcriptome-wide gene expression analysis on rice plants in S deficiency followed by sulfate resupply. S deficiency altered the expressions of 6749 and 1589 genes in roots and shoots, respectively, accounting for 18.07% and 4.28% of total transcripts detected. Homogeneous sulfate resupply in both split-root halves recovered the expression of 27.06% of S-deficiency-responsive genes in shoots, while 20.76% of S-deficiency-responsive genes were recovered by heterogeneous sulfate resupply with only one split-root half being resupplied with sulfate. The local sulfate resupply response genes with expressions only recovered in the split-root half resupplied with sulfate but not in the other half remained in S deficiency were identified in roots, which were mainly enriched in cellular amino acid metabolic process and root growth and development. Several systemic response genes were also identified in roots, whose expressions remained unchanged in the split-root half resupplied with sulfate but were recovered in the other split-root half without sulfate resupply. The systemic response genes were mainly related to calcium signaling and auxin and ABA signaling. In addition, a large number of S-deficiency-responsive genes exhibited simultaneous local and systemic responses to sulfate resupply, such as the sulfate transporter gene OsSULTR1;1 and the O-acetylserine (thiol) lyase gene, highlighting the existence of a systemic regulation of sulfate uptake and assimilation in S deficiency plants followed by sulfate resupply. Our studies provided a comprehensive transcriptome-wide picture of a local and systemic response to heterogeneous sulfate resupply, which will facilitate an understanding of the systemic regulation of S homeostasis in rice.


Subject(s)
Oryza , Biological Transport , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Roots/metabolism , Plants/metabolism , Sulfates/metabolism , Sulfur/metabolism
5.
J Control Release ; 347: 270-281, 2022 07.
Article in English | MEDLINE | ID: mdl-35550912

ABSTRACT

Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Adenosine Triphosphate , Biomimetics , Cell Line, Tumor , Humans , Hyperthermia, Induced/methods , Multimodal Imaging , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/therapy , Phototherapy/methods , Photothermal Therapy , Temperature
6.
Biomaterials ; 286: 121593, 2022 07.
Article in English | MEDLINE | ID: mdl-35635897

ABSTRACT

Cellular barriers such as the cell membranes, lysosomes or nuclear pores of tumor cells hinder the drugs delivery and weaken the efficiency of traditional tumor therapies. Targeted destructing tumor cell membranes can quickly destroy cell homeostasis and kill cells without facing intracellular delivery barriers. Herein, we designed a self-delivery phototherapeutic chimeric peptide (CCP) for high efficient cell membrane-targeting combinational low-temperature photothermal therapy (LTPTT) and photodynamic therapy (PDT). The self-assembled CCP nanoparticles display remarkable tumor accumulation after systemic administration without additional carriers, avoiding the carriers related side toxicities. The CCPs are able to generate reactive oxygen species (ROS) and mild heat (<45 °C) locally at cell membrane and quickly induce immunogenic cell death to achieve efficient combinational LTPTT/PDT. The damage-associated molecular patterns released after cell membrane rupture effectively elicit antitumor immunity to eradicate residual tumor cells. With a single dosage and short-term near-infrared (NIR) light irradiation, CCPs significantly inhibit growth and metastasis of tumor, and prolong survival time of tumor-bearing mice. This work presents a unique cell membrane-targeting phototherapy strategy to kill tumor and suppress metastasis in an effective, safe and minimally invasive manner.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Cell Line, Tumor , Cell Membrane , Mice , Nanoparticles/chemistry , Neoplasms/drug therapy , Peptides/therapeutic use , Phototherapy , Temperature
7.
Biomater Sci ; 10(5): 1267-1280, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35080534

ABSTRACT

The instinctive protective stress responses of tumor cells hamper low-temperature photothermal therapy (LTPTT), resulting in tumor recurrence and metastasis. The rapid blood clearance and low-efficiency tumor enrichment of nanomedicines also decrease the efficacy of LTPTT. In this study, we fabricated coassembled photothermal agents (indocyanine green, ICG) and autophagy inhibitors (chloroquine, CQ) and red blood cell and cancer cell hybrid membrane (RCm)-camouflaged ICGCQ@RCm nanoparticles (ICGCQ@RCm NPs) to enhance tumor LTPTT. The ICGCQ@RCm NPs exhibited prolonged blood drug circulation and markedly enhanced drug accumulation in tumor tissues. The ICGCQ@RCm NPs reduced the thermal tolerance of tumor cells to sensitize ICG-mediated LTPTT by inhibiting protective autophagy. The ICGCQ@RCm NPs exerted strong immunogenic cell death (ICD) after efficient LTPTT to activate antitumor immunity. In addition, ICGCQ@RCms optimized the therapeutic efficacy by imaging-guided LTPTT, taking advantage of the near-infrared (NIR) fluorescence of ICG. Consequently, the ICGCQ@RCm NPs effectively inhibited tumors under mild LTPTT, significantly suppressed tumor metastasis and prolonged the survival time of tumor-bearing mice. Furthermore, the ICGCQ@RCm NPs showed high biosafety in vitro and in vivo. The ICGCQ@RCm NPs demonstrated tumor-targeting and imaging-guided autophagy inhibition-sensitized LTPTT using two Food and Drug Administration (FDA)-approved drugs, which have great potential for clinical application.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Animals , Autophagy , Biomimetics , Cell Line, Tumor , Hyperthermia, Induced/methods , Mice , Nanoparticles/therapeutic use , Photothermal Therapy
8.
Adv Healthc Mater ; 10(19): e2100770, 2021 10.
Article in English | MEDLINE | ID: mdl-34190424

ABSTRACT

The antioxidant defense system in malignant cells, which involves antioxidant enzymes and antioxidant molecules, is an innate barrier to photodynamic therapy (PDT). Because of the complexity of the endogenous antioxidant mechanisms of these cells, simply inhibiting individual antioxidant pathways has a limited effect on improving the lethality of ROS. To enhance the efficacy of PDT for tumor treatment, a versatile nanoparticle (NP)-based drug is developed, which the authors call PZB NP, containing the glutathione inhibitor l-buthionine sulfoximine (BSO) and the heme oxygenase 1 (HO-1) inhibitor protoporphyrin zinc(II) (ZnPP) to suppress the innate antioxidant defense system of cancer cells in a two-pronged manner. BSO reduces intracellular glutathione levels to minimize ROS elimination and protein protection during PDT, and ZnPP inhibits the ROS-stimulated upregulation of the antioxidant HO-1, thus preventing ROS removal by cells after PDT. Thus, BSO and ZnPP synergistically suppress the antioxidant defense systems of cancer cells both during and after protoporphyrin-IX-mediated PDT in a two-pronged manner, resulting in tumor cell death through excess oxidative pressure. The results demonstrate that the construction of nanodrugs having dual antioxidation defense suppression properties is a promising route for the development of highly efficient ROS-based therapies.


Subject(s)
Glutathione , Photochemotherapy , Antioxidants/pharmacology , Buthionine Sulfoximine , Heme Oxygenase-1
9.
Biomater Sci ; 9(14): 5025-5034, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34109950

ABSTRACT

Photothermal therapy (PTT) has drawn great attention in cancer treatment because of its minimal invasiveness and high spatiotemporal selectivity, but it still encounters severe obstacles like heat-resistance, metastasis and recurrence. A key reason for the treatment failure is the highly inflammatory tumor microenvironment caused by hyperthermia. A simultaneous anti-inflammatory therapy alongside the PTT has great potential for overcoming the drawbacks of PTT; however, it has been less reported and further study is urgently needed. In addition, as many inorganic photothermal agents have no inherent imaging capability, diagnostic strategies should be introduced to help identify cancerous lesions and find the best treatment time period for PTT. Herein, we developed a versatile theranostic nanoagent (named T-lipos-CPAuNCs) for synergistic multimodal imaging-guided photothermal/anti-inflammatory cancer therapy. Perfluorohexane (PFH) loaded AuNCs and the anti-inflammatory drug celecoxib were encapsulated into the tumor-targeting cyclic Arg-Gly-Asp (cRGD) peptide modified liposomes to form T-lipos-CPAuNCs. The T-lipos-CPAuNCs accumulated in the tumor tissue and selectively targeted the cancer cells, and converted photo to thermal energy under near-infrared (NIR) laser irradiation to kill the cancer cells by PTT. The high temperature further accelerated the release of celecoxib to exert an anti-inflammatory effect, while on the other hand led to liquid to gas phase transition of PFH to facilitate ultrasound (US) imaging. The T-lipos-CPAuNCs also exhibited photoacoustic (PA) imaging capability. In vitro and in vivo experiments established that under the guidance of multimodal imaging, T-lipos-CPAuNCs significantly suppressed the tumor growth by PTT and prevented tumor metastasis with non-apparent tumor inflammation. The developed theranostic nanosystem (T-lipos-CPAuNCs) shows great potential for PA/US multimodal imaging guided photothermal/anti-inflammatory combination cancer therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Anti-Inflammatory Agents , Cell Line, Tumor , Multimodal Imaging , Neoplasms/diagnostic imaging , Neoplasms/therapy , Phototherapy , Theranostic Nanomedicine
10.
ACS Appl Bio Mater ; 3(6): 3456-3475, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-35025218

ABSTRACT

Because of its high tissue penetrative depth, high remote spatiotemporal selectivity, and noninvasive therapeutic features, sonodynamic therapy (SDT) has received much attention in recent years. In the SDT, a tumor-localizing sonosensitizing agent is activated by ultrasound and produces greatly reactive oxygen species (ROS) to kill tumor cells. Sonosensitizers, including some organic/inorganic compounds and micro/nanoscale sonosensitizers, are an important element in SDT. Herein, we will introduce the organic/inorganic sonosensitizers and advanced micro/nanosized sonosensitizers applied in SDT. At the same time, some perspectives and the future challenges of SDT will be discussed in this review.

11.
Adv Healthc Mater ; 9(1): e1901100, 2020 01.
Article in English | MEDLINE | ID: mdl-31763796

ABSTRACT

Nowadays, cell membrane-targeted therapy, which owns high antitumor efficacy by avoiding cell barriers, has received great attention. Here, a cell membrane-targeted self-delivery theranostic chimeric peptide CMP-PpIX is designed for simultaneously targeted photodynamic therapy (PDT) of tumor and real-time therapeutic feedback. Self-assembled CMP-PpIX nanoparticles can effectively accumulate in tumor by enhanced permeability and retention effect without additional vector. And this chimeric peptide CMP-PpIX has low background fluorescence, which is due to its relatively high intramolecular Förster resonance energy transfer (FRET) quenching efficiency between 5(6)-carboxyfluorescein (FAM) and 4-(dimethylaminoazo)-benzene-4-carboxylic acid (Dabcyl). More importantly, CMP-PpIX can be anchored on the tumor cell membrane for more than 8 h. Under irradiation, reactive oxygen species produced by CMP-PpIX directly damage cell membrane and rapidly induce apoptosis, which significantly improve the efficacy of PDT in vitro and in vivo. Then, peptide sequence Asp-Glu-Val-Asp (DEVD) is subsequently cleaved by activated caspase-3 and activated caspase-7, which separates the FAM and Dabcyl and terminates the FRET process. Therefore, fluorescence of FAM is recovered to monitor the expression of activated caspase-3 in vitro and in vivo to feedback real-time PDT therapeutic efficacy. In general, a novel cell membrane-targeted self-delivery theranostic chimeric peptide offers new promise for effective imaging-guided PDT.


Subject(s)
Cell Membrane/metabolism , Nanoparticles/chemistry , Peptides/chemistry , Photosensitizing Agents/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/drug effects , Female , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Humans , Light , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Nanoparticles/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Peptides/metabolism , Photochemotherapy , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Protoporphyrins/chemistry , Protoporphyrins/metabolism , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
12.
Biomaterials ; 161: 81-94, 2018 04.
Article in English | MEDLINE | ID: mdl-29421565

ABSTRACT

Nowadays, cell membrane targeting therapy has drawn much attention for its high anti-tumor effect by avoiding the cellular barriers. In this study, therapeutic agent conjugated chimeric peptide (Cp) was anchored in cracked cancer cell membranes (CCCM) to construct a self-delivery membrane system (M-Cp), which could relize precise cell membrane targeting therapy. It was found that compared with Cp, M-Cp could target to the cancer cell membrane with longer retention time, which is very crucial for in vivo applications. And the superior cell membrane targeting ability was attributed to the specific proteins (focal adhesion proteins, focal adhesion kinase, RHO family proteins, and integrin) on the CCCM surface. Importantly, the M-Cp could promote tumor-specific immune response, which further enhanced anti-tumor effect when combined with therapeutic agents in M-Cp. What's more, this self-delivery membrane system could be used as a template for cell membrane targeting therapy by changing the therapeutic agents as well as the CCCM, and this strategy would open a new window for various cell membrane targeting therapy.


Subject(s)
Drug Delivery Systems/methods , Peptides/chemistry , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Models, Biological
13.
Small ; 14(11): e1703321, 2018 03.
Article in English | MEDLINE | ID: mdl-29325204

ABSTRACT

Multidrug resistance (MDR) remains one of the biggest obstacles in chemotherapy of tumor mainly due to P-glycoprotein (P-gp)-mediated drug efflux. Here, a transformable chimeric peptide is designed to target and self-assemble on cell membrane for encapsulating cells and overcoming tumor MDR. This chimeric peptide (C16 -K(TPE)-GGGH-GFLGK-PEG8 , denoted as CTGP) with cathepsin B-responsive and cell membrane-targeting abilities can self-assemble into nanomicelles and further encapsulate the therapeutic agent doxorubicin (termed as CTGP@DOX). After the cleavage of the Gly-Phe-Leu-Gly (GFLG) sequence by pericellular overexpressed cathepsin B, CTGP@DOX is dissociated and transformed from spherical nanoparticles to nanofibers due to the hydrophilic-hydrophobic conversion and hydrogen bonding interactions. Thus obtained nanofibers with cell membrane-targeting 16-carbon alkyl chains can adhere firmly to the cell membrane for cell encapsulation and restricting DOX efflux. In comparison to free DOX, 45-time higher drug retention and 49-fold greater anti-MDR ability of CTGP@DOX to drug-resistant MCF-7R cells are achieved. This novel strategy to encapsulate cells and reverse tumor MDR via morphology transformation would open a new avenue towards chemotherapy of tumor.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Peptides/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Cell Membrane/metabolism , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Resistance, Multiple , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , MCF-7 Cells
14.
Macromol Rapid Commun ; 38(21)2017 Nov.
Article in English | MEDLINE | ID: mdl-28960608

ABSTRACT

In recent decades, diverse drug delivery systems (DDS) constructed by self-assembly of dendritic peptides have shown advantages and improvable potential for cancer treatment. Here, an arginine-enriched dendritic amphiphilic chimeric peptide CRRK(RRCG(Fmoc))2 containing multiple thiol groups is programmed to form drug-loaded nano-micelles by self-assembly. With a rational design, the branched hydrophobic groups (Fmoc) of the peptides provide a strong hydrophobic force to prevent the drug from premature release, and the reduction-sensitive disulfide linkages formed between contiguous peptides can control drug release under reducing stimulation. As expected, specific to multidrug resistance (MDR) tumor cells, the arginine-enriched peptide/drug (PD) nano-micelles show accurate nuclear localization ability to prevent the drug being pumped by P-glycoprotein (P-gp) in vitro, as well as exhibiting satisfactory efficacy for MDR tumor treatment in vivo. This design successfully realizes stimuli-responsive drug release aimed at MDR tumor cells via an ingenious sequence arrangement.


Subject(s)
Dendrimers/chemistry , Drug Delivery Systems , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Peptides/chemistry , Animals , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , MCF-7 Cells , Mice , Mice, Nude , Micelles , NIH 3T3 Cells , Nanoparticles/chemistry , Neoplasms/pathology , Subcutaneous Tissue/drug effects
15.
Small ; 13(37)2017 10.
Article in English | MEDLINE | ID: mdl-28783253

ABSTRACT

Tumor hypoxia severely limits the efficacy of traditional photodynamic therapy (PDT). Here, a liposome-based nanoparticle (designated as LipoMB/CaO2 ) with O2 self-sufficient property for dual-stage light-driven PDT is demonstrated to address this problem. Through a short time irradiation, 1 O2 activated by the photosensitizer methylene blue (MB) can induce lipid peroxidation to break the liposome, and enlarge the contact area of CaO2 with H2 O, resulting in accelerated O2 production. Accelerated O2 level further regulates hypoxic tumor microenvironment and in turn improves 1 O2 generation by MB under another long time irradiation. In vitro and in vivo experiments also demonstrate the superior competence of LipoMB/CaO2 to alleviate tumor hypoxia, suppress tumor growth and antitumor metastasis with low side-effect. The O2 self-sufficient LipoMB/CaO2 nanoplatform with dual-stage light manipulation is a successful attempt for PDT against hypoxic tumor.


Subject(s)
Light , Nanoparticles/chemistry , Oxygen/chemistry , Photochemotherapy , Tumor Hypoxia , Animals , Apoptosis , Body Weight , Calcium Compounds/chemistry , Cell Line, Tumor , Liposomes , Methylene Blue , Mice , Nanoparticles/ultrastructure , Necrosis , Oxides/chemistry , Tumor Burden , X-Ray Diffraction
16.
Small ; 13(18)2017 05.
Article in English | MEDLINE | ID: mdl-28266809

ABSTRACT

The nanoplatform GNR-ACPP-PpIX (designated as GNR-ACPI) is designed for dual image guided combined activatable photodynamic therapy (PDT) and photothermal therapy (PTT). In GNR-ACPI, gold nanorods (GNRs) are modified with a protoporphyrin (PpIX, a PDT agent) conjugated activatable cell penetrating peptide (ACPP), which consists of the matrix metalloproteinases-2 (MMP-2) sensitive peptide sequence GPLGLAG. First, the photoactivity of PpIX is effectively quenched by GNRs due to the strong near infrared region light absorption of GNR and the special "U type" structure of ACPP induced close contact between PpIX and GNR. However, once arriving at the tumor site, the GPLGLAG sequence is hydrolyzed by the MMP-2 overexpressed by tumor cells, resulting in the release of the residual cell membrane penetrating peptide (CPP) attached PpIX (CPP-PpIX) with the recovery of photoactivity of PpIX. In addition, with the help of CPP, more efficient cellular uptake of PpIX by tumor cells can be achieved, which will greatly improve the PDT efficacy. Moreover, the GNR can also be utilized for photothermic imaging as well as PTT for tumors. It is found that the combination of PTT and PDT under the guidance of dual-mode imaging greatly enhances the antitumor effects, while possessing negligible systematic toxicity.


Subject(s)
Gold/chemistry , Nanotubes/chemistry , Photochemotherapy/methods , Cell-Penetrating Peptides/chemistry
17.
ACS Nano ; 11(2): 1419-1431, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28107631

ABSTRACT

In this study, we developed a general method to decorate plasmonic gold nanorods (GNRs) with a CD44-targeting functional polymer, containing a hyaluronic acid (HA)-targeting moiety and a small molecule Glut1 inhibitor of diclofenac (DC), to obtain GNR/HA-DC. This nanosystem exhibited the superiority of selectively sensitizing tumor cells for photothermal therapy (PTT) by inhibiting anaerobic glycolysis. Upon specifically targeting CD44, sequentially time-dependent DC release could be achieved by the trigger of hyaluronidase (HAase), which abundantly existed in tumor tissues. The released DC depleted the Glut1 level in tumor cells and induced a cascade effect on cellular metabolism by inhibiting glucose uptake, blocking glycolysis, decreasing ATP levels, hampering heat shock protein (HSP) expression, and ultimately leaving malignant cells out from the protection of HSPs to stress (e.g., heat), and then tumor cells were more easy to kill. Owing to the sensitization effect of GNR/HA-DC, CD44 overexpressed tumor cells could be significantly damaged by PTT with an enhanced therapeutic efficiency in vitro and in vivo.


Subject(s)
Anaerobiosis/drug effects , Glycolysis/drug effects , Hot Temperature , Phototherapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , COS Cells , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Diclofenac/chemistry , Diclofenac/pharmacology , Drug Screening Assays, Antitumor , Gold/chemistry , Gold/pharmacology , HeLa Cells , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , MCF-7 Cells , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , RAW 264.7 Cells
18.
Biomaterials ; 117: 92-104, 2017 02.
Article in English | MEDLINE | ID: mdl-27939904

ABSTRACT

In this work, mitochondria-targeting gold nanostar (AuNS) and anticarcinogen DOX were co-encapsulated in hyaluronic acid (HA) protective shell for tumor-targeting synergistic photothermal/chemo-therapy. Cationic peptide R8 and mitochondria-targeting pro-apoptotic peptide TPP-KLA were co-decorated on AuNS to form AuNS-pep via Au-S bonds. Then, electronegative HA was further coated on the surface via electrostatic interaction for cancer cell targeting. During the coating process, DOX was also introduced via electrostatic interaction to obtain a versatile nanoplatform AuNS-pep/DOX@HA. It was found that the nanoplatform could be internalized into tumor cells via CD44 receptor-mediated recognition. Followed digestion by hyaluronidase (HAase), the therapeutic nanoplatform was able to release DOX for chemotherapy and mitochondria-targeting nanoheater AuNS-pep for near infrared (NIR) light triggered subcellular photothermal therapy (PTT). This tumor-targeting nanoplatform AuNS-pep/DOX@HA displayed prominent non-resistant or resistant tumor inhibition both in vitro and in vivo.


Subject(s)
Doxorubicin/administration & dosage , Metal Nanoparticles/administration & dosage , Mitochondria/drug effects , Nanocapsules/administration & dosage , Neoplasms, Experimental/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Combined Modality Therapy/methods , Doxorubicin/chemistry , Drug Therapy/methods , Female , Gold/administration & dosage , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Mice , Mice, Inbred BALB C , Mice, Nude , Nanocapsules/chemistry , Neoplasms, Experimental/pathology , Particle Size , Treatment Outcome
19.
Biomaterials ; 117: 54-65, 2017 02.
Article in English | MEDLINE | ID: mdl-27936417

ABSTRACT

Supramolecular photosensitizers (supraPSs) have emerged as effective photodynamic therapy (PDT) agents. Here, we propose the assembling capacity of supraPSs as a new strategy to construct theranostic nanoplatform with versatile functions aming at high-performance tumor therapy. By coating tirapazamine (TPZ)-loaded mesoporous silica nanoparticles (MSNs) with layer-by-layer (LbL) assembled multilayer, the versatile nanoplatform (TPZ@MCMSN-Gd3+) was obtained with the formation of supraPSs via host-guest interaction and the chelation with paramagnetic Gd3+. The TPZ@MCMSN-Gd3+ could be specifically uptaken by CD44 receptor overexpressed tumor cells and respond to hyaluronidase (HAase) to trigger the release of therapeutics. As confirmed by in vivo studies, TPZ@MCMSN-Gd3+ showed preferential accumulation in tumor site and significantly inhibited the tumor progression by the collaboration of PDT and bioreductive chemotherapy under NIR fluorescence/MR imaging guidance. Taken together, this supraPSs based strategy paves a new paradigm of the way for the construction of theranostic nanoplatform.


Subject(s)
Antineoplastic Agents/administration & dosage , Nanocapsules/chemistry , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Silicon Dioxide/chemistry , Animals , COS Cells , Chlorocebus aethiops , Crystallization/methods , Female , Humans , MCF-7 Cells , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred BALB C , Mice, Nude , Microscopy, Fluorescence/methods , Nanocapsules/administration & dosage , Nanocapsules/ultrastructure , Nanopores/ultrastructure , Printing, Three-Dimensional , Theranostic Nanomedicine/methods , Tirapazamine , Treatment Outcome , Triazines/administration & dosage
20.
J Mater Chem B ; 4(11): 1932-1940, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-32263070

ABSTRACT

In this paper, we report on an intelligent mesoporous silica-based multifunctional theranostic nanoplatform (designated as MMTNP) for tumor imaging as well as controlled drug release. This theranostic nanoplatform consists of MCM-41 typical mesoporous silica nanoparticles (MSNs) as a hydrophobic drug carrier, matrix metalloprotease-2 (MMP-2) activated fluorescence imaging peptides on the surface of MSNs served as diagnostic probes as well as enzyme-responsive nanovalves blocking the pores, and cRGD peptides further functionalized on the surface of MSNs for tumor targeting. In the absence of MMP-2 conditions, the proximity between the fluorescent dye 5(6)-carboxytetramethylrhodamine hydrochloride (TAMRA) and the quencher 4,4-dimethylamino-azobenzene-4'-carboxylic acid (Dabcyl) on the surface of MSNs resulted in no fluorescence. When the drug loaded nanoplatform arrived at tumor tissue with overexpressed MMP-2, the fluorescence of TAMRA became recovered efficiently due to the hydrolysis of the MMP-2 sensitive peptide substrate, realizing tumor imaging and triggering drug release. In addition, the further introduced cRGD peptide significantly enhanced the targeting efficiency through receptor-mediated endocytosis in tumor cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...