Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
ACS Nano ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360480

ABSTRACT

Conjugated polymers are becoming popular near-infrared II (NIR-II) phototheranostic agents (PTAs) due to their numerous advantages, such as high photostability, large molar extinction coefficients, and excellent photothermal properties. However, the strong π-π interactions between the chains of the conjugated polymers resulted in their generally low NIR-II emission quantum yields (QY). Therefore, the synthesis of conjugated polymers with high QY is an interesting but challenging task. Herein, we proposed a spacer twisting strategy to realize ultrabright NIR-II polymer nanoparticles for fluorescence imaging-guided tumor phototheranostics. Theoretical calculations indicated that the polymer PY-IT has the largest dihedral angle between the largely π-conjugated skeleton and the spacer, which can effectively inhibit intermolecular π-π stacking, resulting in an improved QY as high as 16.5% in nanoparticles. In addition, PY-IT NPs can effectively perform NIR-II imaging and photothermal treatment of tumors. The work presents some valuable guides for achieving ultrabright NIR-II polymeric PTAs with high QY.

2.
Environ Pollut ; 359: 124755, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39151781

ABSTRACT

This study aimed to investigate the spatial distribution of microplastics (MPs) and the features of the bacterial community in the Qiantang River urban river. Surface water samples from the Qiantang River were analyzed for this purpose. The results of the 16S high-throughput sequencing indicated that the microbial community diversity of MPs was significantly lower than in natural water but higher than in natural substrates. The biofilm of MPs was mainly composed of Enterobacteriaceae (28.00%), Bacillaceae (16.25%), and Phormidiaceae (6.75%). The biodiversity on MPs, natural water, and natural substrates varied significantly and was influenced by seasonal factors. In addition, the presence of MPs hindered the denitrification process in the aquatic environment and intensified N2O emission when the nitrate concentration was higher than normal. In particular, polyethylene terephthalate (PET) exhibited a 12% residue of NO3--N and a 4.2% accumulation of N2O after a duration of 48 h. Further findings on gene abundance and cell viability provided further confirmation that PET had a considerable impact on reducing the expression of nirS (by 0.34-fold) and nosZ (by 0.53-fold), hence impeding the generation of nicotinamide adenine dinucleotide (NADH) (by 0.79-fold). Notably, all MPs demonstrated higher the nirK gene abundances than the nirS gene, which could account for the significant accumulation of N2O. The results suggest that MPs can serve as a novel carrier substrate for microbial communities and as a potential promoter of N2O emission in aquatic environments.


Subject(s)
Microplastics , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Rivers/microbiology , Microplastics/toxicity , Water Pollutants, Chemical/analysis , Bacteria/genetics , Bacteria/drug effects , Environmental Monitoring , Microbiota/drug effects , Nitrous Oxide , China
3.
Chem Sci ; 15(32): 13001-13010, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39148804

ABSTRACT

The multiple relaxation processes of excited states are a bridge connecting molecular structures and properties, providing enormous application potential for organic luminogens. However, a systematic understanding and manipulation of the relationship between the molecular structure, excited state relaxation processes, and properties of organic luminogens is still lacking. Herein, we report a strategy for manipulating excited state electronic configurations through the regulation of the sulfur oxidation state to construct eminent organic type I PSs. Combined with the experimental results and theoretical calculations, we have successfully revealed the decisive role of high sulfur oxidation states in promoting ROS production capacity. Impressively, a higher sulfur oxidation state can reduce the singlet-triplet energy gap (ΔE ST), increase the matching degree of transition configurations, promote the changes of the excited state electronic configurations, and boost the effective ISC proportion by enhancing intramolecular interactions. Therefore, DBTS2O with the highest sulfur oxidation state exhibits the strongest type I ROS generation ability. Additionally, guided by our strategy, a water-soluble PS (2OA) is designed and synthesized, showing selective imaging capacity and photokilling ability against Gram-positive bacteria. This study broadens the horizons for both molecular design and mechanism study of high-performance organic type I PSs.

4.
Chemistry ; 30(27): e202400378, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38418406

ABSTRACT

Fluorescence imaging-guided photodynamic therapy (PDT) has attracted extensive attention due to its potential of real-time monitoring the lesion locations and visualizing the treatment process with high sensitivity and resolution. Aggregation-induced emission luminogens (AIEgens) show enhanced fluorescence and reactive oxygen species (ROS) generation after cellular uptake, giving them significant advantages in bioimaging and PDT applications. However, most AIEgens are unfavorable for the application in organisms due to their severe hydrophobicity. Anion-π+ type AIEgens carry intrinsic charges that can effectively alleviate their hydrophobicity and improve their binding capability to cells, which is expected to enhance the bioimaging quality and PDT performance. This concept summarizes the applications of anion-π+ type AIEgens in fluorescence imaging, fluorescence imaging-guided photodynamic anticancer and antimicrobial therapy in recent years, hoping to provide some new ideas for the construction of robust photosensitizers. Finally, the current problems and future challenges of anion-π+ AIEgens are discussed.


Subject(s)
Anions , Optical Imaging , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Humans , Anions/chemistry , Reactive Oxygen Species/metabolism , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Neoplasms/drug therapy , Neoplasms/diagnostic imaging
5.
Phytother Res ; 38(3): 1522-1554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281731

ABSTRACT

COVID-19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some patients infected with COVID-19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID-19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID-19 treatments due to their broad-spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti-SARS-CoV-2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS-CoV-2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS-CoV-2, with a focus on the application of plant-derived compounds in animal models and in human studies.


Subject(s)
COVID-19 , Plants, Medicinal , Animals , Humans , Aged , SARS-CoV-2 , Inflammation , Phytochemicals
6.
Angew Chem Int Ed Engl ; 62(33): e202307776, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37358791

ABSTRACT

The low oxygen dependence of type I photosensitizers (PSs) has made them a popular choice for treating solid tumors. However, the drawbacks of poor water solubility, short emission wavelength, poor stability, and inability to distinguish cancer cells from normal cells limit the application of most type I PSs in clinical therapy. Thereby, developing novel type I PSs for overcoming these problems is an urgent but challenging task. Herein, by utilizing the distinctive structural characteristics of anion-π+ interactions, a highly water-soluble type I PS (DPBC-Br) with aggregation-induced emission (AIE) characteristic and near-infrared (NIR) emission is fabricated for the first time. DPBC-Br displays remarkable water solubility (7.3 mM) and outstanding photobleaching resistance, enabling efficient and precise differentiation between tumor cells and normal cells in a wash-free and long-term tracking manner via NIR-I imaging. Additionally, the superior type I reactive oxygen species (ROS) produced by DPBC-Br provide both specific killing of cancer cells in vitro and inhibition of tumor growth in vivo, with negligible systemic toxicity. This study rationally constructs a highly water-soluble type I PS, which has higher reliability and controllability compared with conventional nanoparticle formulating procedures, offering great potential for clinical cancer treatment.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Water , Reproducibility of Results , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Diagnostic Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Reactive Oxygen Species
7.
Chem Sci ; 14(18): 4863-4871, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37181775

ABSTRACT

Type I photosensitizers (PSs) with an aggregation-induced emission (AIE) feature have received sustained attention for their excellent theranostic performance in the treatment of clinical diseases. However, the development of AIE-active type I PSs with strong reactive oxygen species (ROS) production capacity remains a challenge due to the lack of in-depth theoretical studies on the aggregate behavior of PSs and rational design strategies. Herein, we proposed a facile oxidization strategy to enhance the ROS generation efficiency of AIE-active type I PSs. Two AIE luminogens, MPD and its oxidized product MPD-O were synthesized. Compared with MPD, the zwitterionic MPD-O showed higher ROS generation efficiency. The introduction of electron-withdrawing oxygen atoms results in the formation of intermolecular hydrogen bonds in the molecular stacking of MPD-O, which endowed MPD-O with more tightly packed arrangement in the aggregate state. Theoretical calculations demonstrated that more accessible intersystem crossing (ISC) channels and larger spin-orbit coupling (SOC) constants provide further explanation for the superior ROS generation efficiency of MPD-O, which evidenced the effectiveness of enhancing the ROS production ability by the oxidization strategy. Moreover, DAPD-O, a cationic derivative of MPD-O, was further synthesized to improve the antibacterial activity of MPD-O, showing excellent photodynamic antibacterial performance against methicillin-resistant S. aureus both in vitro and in vivo. This work elucidates the mechanism of the oxidization strategy for enhancing the ROS production ability of PSs and offers a new guideline for the exploitation of AIE-active type I PSs.

8.
Adv Mater ; 35(3): e2208229, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36300808

ABSTRACT

Phototheranostics with second near-infrared (NIR-II) imaging and photothermal effect have become a burgeoning biotechnology for tumor diagnosis and precise treatment. As important parameters of phototheranostic agents (PTAs), fluorescence quantum yield (QY) and photothermal conversion efficiency (PCE) are usually considered as a pair of contradictions that is difficult to be simultaneously enhanced. Herein, a fluorination strategy for designing A-D-A type PTAs with synchronously improved QY and PCE is proposed. Experimental results show that the molar extinction coefficient (ε), NIR-II QY, and PCE of all fluorinated PTAs nanoparticles (NPs) are definitely improved compared with the chlorinated counterparts. Theoretical calculation results demonstrate that fluorination can maximize the electrostatic potential difference by virtue of the high electronegativity of fluorine, which may increase intra/intermolecular D-A interactions, tighten molecule packing, and further promote the increase of ε, ultimately leading to simultaneously enhanced QY and PCE. In these PTA NPs, FY6-NPs display NIR-II emission extended to 1400 nm with the highest NIR-II QY (4.2%) and PCE (80%). These features make FY6-NPs perform well in high-resolution imaging of vasculature and NIR-II imaging-guided photothermal therapy (PTT) of tumors. This study develops a valuable guideline for constructing NIR-II organic PTAs with high performance.


Subject(s)
Nanoparticles , Neoplasms , Humans , Halogenation , Theranostic Nanomedicine/methods , Phototherapy , Photothermal Therapy , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Cell Line, Tumor
9.
Angew Chem Int Ed Engl ; 61(50): e202212673, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36256574

ABSTRACT

The performances of second near-infrared (NIR-II) organic phototheranostic agents (OPTAs) depend on both molecular structure and molecular packing when used as nanoparticles (NPs). Herein, we proposed a facile structural isomerization-induced 3D spatial donor (D)-acceptor (A) interlocked network for achieving NIR-II OPTAs. Two isomers, 4MNVDPP and 6MNVDPP were synthesized and formulated into NPs. 6MNVDPP, which has a larger electrostatic potential difference, exhibits a compact 3D spatial D-A interlocked network in the crystal form, while 4MNVDPP forms 2D D-D type J-aggregates. Thus, 6MNVDPP NPs show red-shifted NIR absorption and larger molar extinction coefficient than 4MNVDPP NPs. Thanks to the typical NIR-II emission, superior photothermal-stability, high photothermal conversion efficiency (89 %) and reactive oxygen species production capacity, 6MNVDPP NPs exhibit outstanding NIR-II tiny capillary vasculature/tumor imaging ability and synergistic photothermal/photodynamic anti-cancer effect in vivo.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Theranostic Nanomedicine/methods , Photoacoustic Techniques/methods , Isomerism , Nanoparticles/chemistry , Phototherapy
10.
Biosensors (Basel) ; 12(7)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35884287

ABSTRACT

Hepatocellular carcinoma (HCC) is associated with a high mortality rate worldwide. The therapeutic outcomes can be significantly improved if diagnosis and treatment are initiated earlier in the disease process. Recently, the carboxylesterase (CaE) activity/level in human plasma was reported to be a novel serological biomarker candidate for HCC. In this article, we fabricated a new fluorescent probe with AIE characteristics for the rapid detection of CaE with a more reliable ratiometric response mode. The TCFISE probe showed high sensitivity (LOD: 93.0 µU/mL) and selectivity toward CaE. Furthermore, the good pH stability, superior resistance against photobleaching, and low cytotoxicity highlight the high potential of the TCFISE probe for application in the monitoring of CaE activity in complex biological samples and in live cells, tissues, and animals.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carboxylesterase , Carcinoma, Hepatocellular/diagnosis , Fluorescent Dyes , Humans , Liver Neoplasms/diagnosis , Spectrometry, Fluorescence
11.
Chem Sci ; 13(11): 3129-3139, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414886

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) with boron-nitrogen (BN) moieties have attracted tremendous interest due to their intriguing electronic and optoelectronic properties. However, most of the BN-fused π-systems reported to date are difficult to modify and exhibit traditional aggregation-caused quenching (ACQ) characteristics. This phenomenon greatly limits their scope of application. Thus, continuing efforts to seek novel, structurally distinct and functionally diverse structures are highly desirable. Herein, we proposed a one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-containing π-skeletons through flexible regioselective functionalization engineering. In this way, three novel functionalized BN luminogens (DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT) with similar structures were obtained. Intriguingly, DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT exhibit completely different emission behaviors. Fluorogens DPA-BN-BFT and MeO-DPA-BN-BFT exhibit a typical ACQ effect; in sharp contrast, DMA-DPA-BN-BFT possesses a prominent aggregation induced emission (AIE) effect. To the best of our knowledge, this is the first report to integrate ACQ and AIE properties into one BN aromatic backbone with subtle modified structures. Comprehensive analysis of the crystal structure and theoretical calculations reveal that relatively large twisting angles, multiple intermolecular interactions and tight crystal packing modes endow DMA-DPA-BN-BFT with strong AIE behavior. More importantly, cell imaging demonstrated that luminescent materials DPA-BN-BFT and DMA-DPA-BN-BFT can highly selectively and sensitively detect lipid droplets (LDs) in living MCF-7 cells. Overall, this work provides a new viewpoint of the rational design and synthesis of advanced BN-polycyclic aromatics with AIE features and triggers the discovery of new functions and properties of azaborine chemistry.

12.
ACS Nano ; 16(3): 4162-4174, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35230081

ABSTRACT

Tumor hypoxia seriously impairs the therapeutic outcomes of type II photodynamic therapy (PDT), which is highly dependent upon tissue oxygen concentration. Herein, a facile strategy of acceptor planarization and donor rotation is proposed to design type I photosensitizers (PSs) and photothermal reagents. Acceptor planarization can not only enforce intramolecular charge transfer to redshift NIR absorption but also transfer the type of PSs from type II to type I photochemical pathways. Donor rotation optimizes photothermal conversion efficiency (PCE). Accordingly, three 3,6-divinyl-substituted diketopyrrolopyrrole (DPP) derivatives, 2TPAVDPP, TPATPEVDPP, and 2TPEVDPP, with different number of rotors were prepared. Experimental results showed that three compounds were excellent type I PSs, and the corresponding 2TPEVDPP nanoparticles (NPs) with the most rotors possessed the highest PCE. The photophysical properties of 2TPEVDPP NPs are particularly suitable for in vivo NIR fluorescence imaging-guided synergistic PDT/PTT therapy. The proposed strategy is helpful for exploiting type I phototherapeutic reagents with high efficacy for synergistic PDT and PTT.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Nanoparticles/chemistry , Neoplasms/drug therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy , Triazenes
13.
J Org Chem ; 83(3): 1402-1413, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29337560

ABSTRACT

Described is a visible light-promoted three-component tandem annulation of amines, aryl/alkyl isothiocyanates, and α-bromoesters to form 2-iminothiazolidin-4-ones in the absence of metal and photocatalyst at room temperature. This [1 + 2 + 2] cyclization strategy involves visible light-promoted C-S/C-N bond formation and features a powerful approach to the synthesis of 2-iminothiazolidin-4-ones with broad substrate scope, excellent functional group tolerance, mild reaction conditions, step-economy, and simple operation, which also has potential applications in the pharmaceutical industry. UV-vis spectroscopy indicates that an in situ-generated H-bonding electron donor-acceptor (EDA) complex probably acts as the photocatalyst, facilitating the reaction process.

SELECTION OF CITATIONS
SEARCH DETAIL