Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
1.
Thorac Cancer ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709912

ABSTRACT

BACKGROUND: Berberine (BBR), an isoquinoline alkaloid from Coptidis rhizoma, has been found to have powerful activities against various human malignancies, including breast cancer. However, the underlying antitumor mechanisms of BBR in breast cancer remain poorly understood. METHODS: Breast cancer cells were cultured and treated with different doses (0, 20, 40, and 60 µM) of BBR for 48 h. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. Fibroblast growth factor 7 (FGF7), methyltransferase-like 3 (METTL3), and insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) mRNA levels and protein levels were measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. Interaction between METTL3 and FGF7 m6A was assessed using methylated RNA immunoprecipitation (MeRIP)-qPCR and RNA immunoprecipitation (RIP) assay. Binding ability between IGF2BP3 and FGF7 mRNA was analyzed using RIP assay. RESULTS: BBR treatment hindered breast cancer cell proliferation, invasion, migration, and induced apoptosis. FGF7 expression was upregulated in breast cancer tissues, while its level was reduced in BBR-treated tumor cells. FGF7 upregulation relieved the repression of BBR on breast cancer cell malignant behaviors. In mechanism, METTL3 stabilized FGF7 mRNA through the m6A-IGF2BP3-dependent mechanism and naturally improved FGF7 expression. BBR treatment inhibited breast cancer growth in vivo. CONCLUSION: BBR treatment blocked breast cancer cell growth and metastasis partly by regulating METTL3-mediated m6A modification of FGF7 mRNA, providing a promising therapeutic target for breast cancer treatment.

2.
Article in English | MEDLINE | ID: mdl-38717294

ABSTRACT

Much of current clinical interest has focused on mRNA therapeutics for the treatment of lung-associated diseases, such as infections, genetic disorders, and cancers. However, the safe and efficient delivery of mRNA therapeutics to the lungs, especially to different pulmonary cell types, is still a formidable challenge. In this paper, we proposed a cationic lipid pair (CLP) strategy, which utilized the liver-targeted ionizable lipid and its derived quaternary ammonium lipid as the CLP to improve liver-to-lung tropism of four-component lipid nanoparticles (LNPs) for in vivo mRNA delivery. Interestingly, the structure-activity investigation identified that using liver-targeted ionizable lipids with higher mRNA delivery performance and their derived lipid counterparts is the optimal CLP design for improving lung-targeted mRNA delivery. The CLP strategy was also verified to be universal and suitable for clinically available ionizable lipids such as SM-102 and ALC-0315 to develop lung-targeted LNP delivery systems. Moreover, we demonstrated that CLP-based LNPs were safe and exhibited potent mRNA transfection in pulmonary endothelial and epithelial cells. As a result, we provided a powerful CLP strategy for shifting the mRNA delivery preference of LNPs from the liver to the lungs, exhibiting great potential for broadening the application scenario of mRNA-based therapy.

3.
Opt Lett ; 49(10): 2621-2624, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748120

ABSTRACT

Fluorescence fluctuation super-resolution microscopy (FF-SRM) has emerged as a promising method for the fast, low-cost, and uncomplicated imaging of biological specimens beyond the diffraction limit. Among FF-SRM techniques, super-resolution radial fluctuation (SRRF) microscopy is a popular technique but is prone to artifacts, resulting in low fidelity, especially under conditions of high-density fluorophores. In this Letter, we developed a novel, to the best of our knowledge, combinatory computational super-resolution microscopy method, namely VeSRRF, that demonstrated superior performance in SRRF microscopy. VeSRRF combined intensity and gradient variance reweighted radial fluctuations (VRRF) and enhanced-SRRF (eSRRF) algorithms, leveraging the enhanced resolution achieved through intensity and gradient variance analysis in VRRF and the improved fidelity obtained from the radial gradient convergence transform in eSRRF. Our method was validated using microtubules in mammalian cells as a standard biological model system. Our results demonstrated that VeSRRF consistently achieved the highest resolution and exceptional fidelity compared to those obtained from other algorithms in both single-molecule localization microscopy (SMLM) and FF-SRM. Moreover, we developed the VeSRRF software package that is freely available on the open-source ImageJ/Fiji software platform to facilitate the use of VeSRRF in the broader community of biomedical researchers. VeSRRF is an exemplary method in which complementary microscopy techniques are integrated holistically, creating superior imaging performance and capabilities.


Subject(s)
Algorithms , Microscopy, Fluorescence , Microscopy, Fluorescence/methods , Microtubules , Image Processing, Computer-Assisted/methods , Animals , Software
4.
Nat Commun ; 15(1): 3003, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589368

ABSTRACT

Inflammatory depression is a treatment-resistant subtype of depression. A causal role of the gut microbiota as a source of low-grade inflammation remains unclear. Here, as part of an observational trial, we first analyze the gut microbiota composition in the stool, inflammatory factors and short-chain fatty acids (SCFAs) in plasma, and inflammatory and permeability markers in the intestinal mucosa of patients with inflammatory depression (ChiCTR1900025175). Gut microbiota of patients with inflammatory depression exhibits higher Bacteroides and lower Clostridium, with an increase in SCFA-producing species with abnormal butanoate metabolism. We then perform fecal microbiota transplantation (FMT) and probiotic supplementation in animal experiments to determine the causal role of the gut microbiota in inflammatory depression. After FMT, the gut microbiota of the inflammatory depression group shows increased peripheral and central inflammatory factors and intestinal mucosal permeability in recipient mice with depressive and anxiety-like behaviors. Clostridium butyricum administration normalizes the gut microbiota, decreases inflammatory factors, and displays antidepressant-like effects in a mouse model of inflammatory depression. These findings suggest that inflammatory processes derived from the gut microbiota can be involved in neuroinflammation of inflammatory depression.


Subject(s)
Gastrointestinal Microbiome , Animals , Humans , Mice , Depression/therapy , Fatty Acids, Volatile/metabolism , Fecal Microbiota Transplantation , Feces
5.
Medicine (Baltimore) ; 103(17): e37574, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669417

ABSTRACT

Visual stimuli play key roles in influencing men sexual behavior. However, few studies have explored the sexual behavior of blind men. To provide more information about blind men for the study of andrology by surveying the characteristics of their current sexual behavior. A questionnaire-based cross-sectional study design was performed. The questionnaire contained questions regarding demographic characteristics of participants, access to sexual knowledge, perception of the sexual partners' beauty, and sexual arousal. Blind men were interviewed face-to-face by the trained investigator. Complete questionnaires were collected from 54 participants, with an average age of 40.57 ±â€…9.80 years old. Eye diseases were the most frequent cause of blindness. In terms of sexual orientation, all participants were heterosexual. Notably, 90.7% of the participants reported to have had a sexual experience. Among those who had engaged in sexual behavior, 93.6% experienced sexual pleasure and 69.4% had a normal erectile function. Overall, 16.7% of the participants received sex education. The participants obtained sexual knowledge mainly through sounds from mobile phones, peer-to-peer communication, sounds of television and radio. Voice was the most frequent perception of the sexual partners' beauty, followed by figure, skin, and body fragrance. In terms of stimuli of sexual arousal, tactile sensation and auditory sensation in that order were the most frequent stimuli of sexual arousal. Stimuli of sexual arousal in blind men are mainly mediated by sound and touch. Blind men understand their sexual partners' beauty through auditory, tactile, and olfactory sensations. Blind men in Ganzhou lack formal and systematic sex education.


Subject(s)
Sexual Behavior , Humans , Male , Cross-Sectional Studies , Adult , Sexual Behavior/psychology , China/epidemiology , Middle Aged , Surveys and Questionnaires , Blindness/epidemiology , Blindness/psychology , Sexual Arousal , Sexual Partners/psychology , Visually Impaired Persons/psychology , Visually Impaired Persons/statistics & numerical data , Sex Education/methods
6.
J Affect Disord ; 356: 664-671, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615845

ABSTRACT

OBJECTIVE: Most patients with major depressive disorder (MDD) have somatic symptoms, but little studies pay attention in the microbial-inflammatory mechanisms of these somatic symptoms. Our study aimed to investigate alterations in gut microbiota and its correlation with inflammatory marker levels and somatic symptoms in first-episode treatment-naive MDD. METHODS: Subjects contained 160 MDD patients and 101 healthy controls (HCs). MDD patients were divided into MDD with somatic symptoms group (MDDS) and MDD without somatic symptoms group (MDDN) based on Somatic Self-rating Scale (SSS). 16S ribosomal RNA sequencing were performed to analyze the composition of the fecal microbiota. The inflammatory factors were measured using enzyme linked immunosorbent assay (ELISA). Correlation among the altered gut microbiota, inflammatory factor and severity of clinical symptoms were analysized. RESULTS: Relative to HCs, MDD patients had higher levels of high-sensitivity C-reactive protein (hs-CRP) as well as disordered α-diversity and ß-diversity of gut microbiota. Linear discriminant effect size (LEfSe) analysis showed that MDD patients had higher proportions of Bifidobacterium, Blautia, Haemophilus and lower proportions of Bacteroides, Faecalibacterium, Roseburia, Dialister, Sutterella, Parabacteroides, Bordetella, and Phascolarctobacterium from the genus aspect. Furthermore, correlation analysis showed Bacteroides and Roseburia had negative correlations with the hs-CRP, HAMD-24, the total and factor scores of SSS in all participants. Further, compared with MDDN, the Pielous evenness was higher in MDDS. Random Forest (RF) analysis showed 20 most important genera discriminating MDD-S and MDDN, HCs. The ROC analysis showed that the AUC was 0.90 and 0.81 combining these genera respectively. CONCLUSION: Our study manifested MDD patients showed disordered gut microbiota and elevated hs-CRP levels, and altered gut microbiota was closely associated with hs-CRP, depressive symptoms, and somatic symptoms.


Subject(s)
C-Reactive Protein , Depressive Disorder, Major , Feces , Gastrointestinal Microbiome , Humans , Depressive Disorder, Major/microbiology , Depressive Disorder, Major/blood , Female , Male , Adult , C-Reactive Protein/analysis , Feces/microbiology , Middle Aged , Medically Unexplained Symptoms , RNA, Ribosomal, 16S/genetics , Case-Control Studies , Young Adult
7.
Magn Reson Imaging ; 110: 86-95, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631533

ABSTRACT

Segmentation of cerebral vasculature on MR vascular images is of great significance for clinical application and research. However, the existing cerebrovascular segmentation approaches are limited due to insufficient image contrast and complicated algorithms. This study aims to explore the potential of the emerging four-dimensional arterial spin labeling magnetic resonance angiography (4D ASL-MRA) technique for fast and accurate cerebrovascular segmentation with a simple machine-learning approach. Nine temporal features were extracted from the intensity-time signal of each voxel, and eight spatial features from the neighboring voxels. Then, the unsupervised outlier detection algorithm, i.e. Isolation Forest, is used for segmentation of the vascular voxels based on the extracted features. The total length of the centerlines of the intracranial arterial vasculature, the dice similarity coefficient (DSC), and the average Hausdorff Distance (AVGHD) on the cross-sections of small- to large-sized vessels were calculated to evaluate the performance of the segmentation approach on 4D ASL-MRA of 18 subjects. Experiments show that the temporal information on 4D ASL-MRA can largely improve the segmentation performance. In addition, the proposed segmentation approach outperforms the traditional methods that were performed on the 3D image (i.e. the temporal average intensity projection of 4D ASL-MRA) and the previously proposed frame-wise approach. In conclusion, this study demonstrates that accurate and robust segmentation of cerebral vasculature is achievable on 4D ASL-MRA by using a simple machine-learning approach with appropriate features.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Machine Learning , Magnetic Resonance Angiography , Spin Labels , Humans , Magnetic Resonance Angiography/methods , Imaging, Three-Dimensional/methods , Male , Female , Adult , Cerebral Arteries/diagnostic imaging , Image Processing, Computer-Assisted/methods , Cerebrovascular Circulation , Brain/diagnostic imaging , Brain/blood supply
8.
Anal Chem ; 96(17): 6794-6801, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38624007

ABSTRACT

Identification of protein profiling on plasma exosomes by SERS can be a promising strategy for early cancer diagnosis. However, it is still challenging to detect multiple exosomal proteins simultaneously by SERS since the Raman signals of exosomes detected by conventional colloidal nanocrystals or two-dimensional SERS substrates are incomplete and complex. Herein, we develop a novel three-dimensional (3D) surround-enhancing SERS platform, named 3D se-SERS, for the multiplex detection of exosomal proteins. In this 3D se-SERS, proteins and exosomes are covered with "hotspots" generated by the gold nanoparticles, which surround the analytes densely and three-dimensionally, providing sensitive and comprehensive SERS signals. Combining this 3D se-SERS with a deep learning model, we successfully quantitatively profiled seven proteins including CD63, CD81, CD9, CD151, CD171, TSPAN8, and PD-L1 on the surface of plasma exosomes from patients, which can predict the occurrence and advancement of lung cancer. This 3D se-SERS integrating deep learning technique benefits from high sensitivity and significant multiplexing ability for comprehensive analysis of proteins and exosomes, demonstrating the potential of deep learning-driven 3D se-SERS technology for plasma exosome-based early cancer diagnosis.


Subject(s)
Deep Learning , Exosomes , Gold , Spectrum Analysis, Raman , Humans , Exosomes/chemistry , Gold/chemistry , Early Detection of Cancer/methods , Lung Neoplasms/diagnosis , Lung Neoplasms/blood , Metal Nanoparticles/chemistry
9.
Biomed Pharmacother ; 175: 116672, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677249

ABSTRACT

Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetic patients, with its incidence continuously increasing in recent years. DN causes renal tissue damage and functional decline, expedites the aging process of the kidneys, and may ultimately progress leading to end-stage renal disease, severely impacting the patient's quality of life and prognosis. Mesenchymal stem cells (MSCs) are highly valued for their multipotent differentiation, paracrine functions, immunomodulatory effects, and capacity for tissue repair. Particularly, exosomes (Exo) derived from MSCs (MSCs-Exo) are rich in bioactive molecules and facilitate intercellular communication, participating in various physiological and pathological processes. MSCs and MSCs-Exo, in particular, have been demonstrated to have therapeutic effects in DN treatment research by encouraging tissue repair, fibrosis inhibition, and inflammation reduction. Research has shown that MSCs and MSCs-Exo have therapeutic effects in DN treatment by promoting tissue repair, inhibiting fibrosis, and reducing inflammation. Recent studies underscore the potential of MSCs and MSCs-Exo, highlighting their broad applicability in DN treatment. This review aims to provide a comprehensive summary of the scientific developments in treating DN using MSCs and MSCs-Exo from diverse sources, while also exploring their future therapeutic possibilities in detail.

10.
World J Gastrointest Surg ; 16(2): 307-317, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463380

ABSTRACT

BACKGROUND: Gallstones are common lesions that often require surgical intervention. Laparoscopic cholecystectomy is the treatment of choice for symptomatic gallstones. Preoperatively, the anatomical morphology of the cystic duct (CD), needs to be accurately recognized, especially when anatomical variations occur in the CD, which is otherwise prone to bile duct injury. However, at present, there is no optimal classification system for CD morphology applicable in clinical practice, and the relationship between anatomical variations in CDs and gallstones remains to be explored. AIM: To create a more comprehensive clinically applicable classification of the morphology of CD and to explore the correlations between anatomic variants of CD and gallstones. METHODS: A total of 300 patients were retrospectively enrolled from October 2021 to January 2022. The patients were divided into two groups: The gallstone group and the nongallstone group. Relevant clinical data and anatomical data of the CD based on magnetic resonance cholangiopancreatography (MRCP) were collected and analyzed to propose a morphological classification system of the CD and to explore its relationship with gallstones. Multivariate analysis was performed using logistic regression analyses to identify the independent risk factors using variables that were significant in the univariate analysis. RESULTS: Of the 300 patients enrolled in this study, 200 (66.7%) had gallstones. The mean age was 48.10 ± 13.30 years, 142 (47.3%) were male, and 158 (52.7%) were female. A total of 55.7% of the patients had a body mass index (BMI) ≥ 24 kg/m2. Based on the MRCP, the CD anatomical typology is divided into four types: Type I: Linear, type II: n-shaped, type III: S-shaped, and type IV: W-shaped. Univariate analysis revealed differences between the gallstone and nongallstone groups in relation to sex, BMI, cholesterol, triglycerides, morphology of CD, site of CD insertion into the extrahepatic bile duct, length of CD, and angle between the common hepatic duct and CD. According to the multivariate analysis, female, BMI (≥ 24 kg/m2), and CD morphology [n-shaped: Odds ratio (OR) = 10.97, 95% confidence interval (95%CI): 5.22-23.07, P < 0.001; S-shaped: OR = 4.43, 95%CI: 1.64-11.95, P = 0.003; W-shaped: OR = 7.74, 95%CI: 1.88-31.78, P = 0.005] were significantly associated with gallstones. CONCLUSION: The present study details the morphological variation in the CD and confirms that CD tortuosity is an independent risk factor for gallstones.

11.
iScience ; 27(3): 109168, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439965

ABSTRACT

Distant metastasis is the main cause of death in patients with colorectal cancer (CRC). A better understanding of the mechanisms of metastasis can greatly improve the outcome of patients with CRC. Accumulating evidence suggests that circRNA plays pivotal roles in cancer progression and metastasis, especially acting as a miRNA sponge to regulate the expression of the target gene. A public database bioinformatics analysis found that miR-1825 was highly expressed in CRC tissues. In this study, miR-1825 was highly expressed in CRC tissues, which was positively correlated with lymph node metastasis and distant metastasis. In vitro and in vivo experiments confirmed that miR-1825 was positively correlated with the proliferation and migration of CRC cells. This event can be inhibited by circTBC1D22A. CircTBC1D22A can directly interact with miR-1825 and subsequently act as a miRNA sponge to regulate the expression of the target gene ATG14, which collectively advances the autophagy-mediated progression and metastasis of CRC.

12.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474592

ABSTRACT

This article reports three new two-photon absorption (TPA) materials that are quinolinium-carbazole derivates. They are 3-(N-methyl-4-ethylquinolinium iodide)-9-ethylcarbazole (M4), 3-(N-methyl-4-ethylquinolinium iodide)-9-ethylcarbazole (H2), and 3-(N-methyl-4-ethylquinolinium iodide)-9-ethylcarbazole (H4). Their TPA cross-sections are 491, 515, and 512 GM, respectively. Under the excitation of near-infrared light, their fluorescence emission is about 650 nm. The compounds can stain nucleic acid DNA with the same level of nuclear localization as Hoechst 33342. Under continuous irradiation with a near-infrared laser, the three new compounds showed less fluorescence decay than DAPI, and the average fluorescence decay rates were 0.016%/s, 0.020%/s, and 0.023%/s. They are expected to become new two-photon fluorescent probes of nucleic acid DNA because of their excellent performance.


Subject(s)
Iodides , Photons , Fluorescence , Carbazoles , DNA , Infrared Rays , Nucleic Acid Probes , Fluorescent Dyes
13.
Org Lett ; 26(11): 2271-2275, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38457924

ABSTRACT

A clean and direct three-component radical 1,2-difunctionalization of various alkenes with perfluoroalkyl iodides and thiosulfonates enabled by the electron donor-acceptor complex has been developed under light illumination at room temperature. The approach offers a convenient and environmentally friendly route for the simultaneous incorporation of Csp3-Rf and Csp3-S bonds, affording valuable polyfunctionalized alkane derivatives containing fluorine and sulfur in satisfactory yields. Consequently, this methodology holds significant value and practicality in the field of organic synthesis.

14.
J Control Release ; 369: 88-100, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38471640

ABSTRACT

Cell-free DNA (cfDNA) released from dead cells could be a player in some autoimmune disorders by activating Toll-like receptor 9 (TLR9) and inducing proinflammatory cytokines. Cationic nanoparticles (cNPs) address cfDNA clearance, yet challenges persist, including toxicity, low specificity and ineffectiveness against endocytosed cfDNA. This study introduced pH-sensitive cNPs, reducing off-target effects and binding cfDNA at inflammatory sites. This unique approach inhibits the TLR9 pathway, offering a novel strategy for inflammation modulation. Synthesized cNPs, with distinct cationic moieties, exhibit varied pKa values, enhancing cfDNA binding. Comprehensive studies elucidate the mechanism, demonstrating minimal extracellular binding, enhanced endosomal DNA binding, and optimal tumor necrosis factor-α suppression. In a traumatic brain injury mice model, pH-sensitive cNPs effectively suppress inflammatory cytokines, highlighting their potential in acute inflammation regulation.

15.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399443

ABSTRACT

The dried, mature fruit of the palm tree species Areca catechu L. is known as the areca nut (AN) or betel nut. It is widely cultivated in the tropical regions. In many nations, AN is utilized for traditional herbal treatments or social activities. AN has historically been used to address various health issues, such as diarrhea, arthritis, dyspepsia, malaria, and so on. In this review, we have conducted a comprehensive summary of the biological effects and biomedical applications of AN and its extracts. Initially, we provided an overview of the constituents in AN extract. Subsequently, we summarized the biological effects of AN and its extracts on the digestive system, nervous system, and circulatory system. And we elucidated the contributions of AN and its extracts in antidepressant, anti-inflammatory, antioxidant, and antibacterial applications. Finally, we have discussed the challenges and future perspectives regarding the utilization of AN and its extracts as emerging pharmaceuticals or valuable adjuncts within the pharmaceutical field.

16.
ACS Nano ; 18(9): 6733-6739, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38335468

ABSTRACT

In the landscape of continuous downscaling metal-oxide-semiconductor field-effect transistors, two-dimensional (2D) semiconductors with atomic thinness emerge as promising channel materials for ultimate scaled devices. However, integrating compatible dielectrics with 2D semiconductors, particularly in a scalable way, remains a critical challenge that hinders the development of 2D devices. Recently, 2D inorganic molecular crystals (IMCs), which are free of dangling bonds and possess excellent dielectric properties and simplicity for scalable fabrication, have emerged as alternatives for gate dielectric integration in 2D devices. In this Perspective, we start with the introduction of structure and synthesis methods of IMCs and then discuss the explorations of using IMCs as the dielectrics, as well as some remaining relevant issues to be unraveled. Moreover, we look at the future opportunities of IMC dielectrics in 2D devices both for practical applications and fundamental research.

17.
Oncogene ; 43(16): 1190-1202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409551

ABSTRACT

Protein ubiquitination is a common post-translational modification and a critical mechanism for regulating protein stability. This study aimed to explore the role and potential molecular mechanism of ubiquitin-specific peptidase 38 (USP38) in the progression of lung adenocarcinoma (LUAD). USP38 expression was significantly higher in patients with LUAD than in their counterparts, and higher USP38 expression was closely associated with a worse prognosis. USP38 silencing suppresses the proliferation of LUAD cells in vitro and impedes the tumorigenic activity of cells in xenograft mouse models in vivo. Further, we found that USP38 affected the protein stability of transcription factor Krüppel-like factors 5 (KLF5) by inhibiting its degradation. Subsequent mechanistic investigations showed that the N-terminal of USP38 (residues 1-400aa) interacted with residues 1-200aa of KLF5, thereby stabilizing the KLF5 protein by deubiquitination. Moreover, we found that PIAS1-mediated SUMOylation of USP38 was promoted, whereas SENP2-mediated de-SUMOylation of USP38 suppressed the deubiquitination effects of USP38 on KLF5. Additionally, our results demonstrated that KLF5 overexpression restored the suppression of the malignant properties of LUAD cells by USP38 knockdown. SUMOylation of USP38 enhances the deubiquitination and stability of KLF5, thereby augmenting the malignant progression of LUAD.


Subject(s)
Adenocarcinoma of Lung , Transcription Factors , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Cell Proliferation/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Transcription Factors/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitination
18.
Cell Mol Gastroenterol Hepatol ; 17(6): 965-981, 2024.
Article in English | MEDLINE | ID: mdl-38342302

ABSTRACT

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS: Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS: Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS: Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.


Subject(s)
Disease Models, Animal , Inflammation , Liver , Macrophages , Mice, Knockout , Reperfusion Injury , cdc42 GTP-Binding Protein , Animals , Reperfusion Injury/pathology , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , Liver/pathology , Liver/metabolism , Liver/immunology , Inflammation/pathology , Inflammation/metabolism , Myeloid Cells/metabolism , Myeloid Cells/pathology , STAT3 Transcription Factor/metabolism , Male , STAT1 Transcription Factor/metabolism , Cytokines/metabolism , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/deficiency , Mice, Inbred C57BL , Gene Deletion
19.
Sensors (Basel) ; 24(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38257449

ABSTRACT

Improving underwater image quality is crucial for marine detection applications. However, in the marine environment, captured images are often affected by various degradation factors due to the complexity of underwater conditions. In addition to common color distortions, marine snow noise in underwater images is also a significant issue. The backscatter of artificial light on marine snow generates specks in images, thereby affecting image quality, scene perception, and subsequently impacting downstream tasks such as target detection and segmentation. Addressing the issues caused by marine snow noise, we have designed a new network structure. In this work, a novel skip-connection structure called a dual channel multi-scale feature transmitter (DCMFT) is implemented to reduce information loss during downsampling in the feature encoding and decoding section. Additionally, in the feature transfer process for each stage, iterative attentional feature fusion (iAFF) modules are inserted to fully utilize marine snow features extracted at different stages. Finally, to further optimize the network's performance, we incorporate the multi-scale structural similarity index (MS-SSIM) into the loss function to ensure more effective convergence during training. Through experiments conducted on the Marine Snow Removal Benchmark (MSRB) dataset with an augmented sample size, our method has achieved significant results. The experimental results demonstrate that our approach excels in removing marine snow noise, with a peak signal-to-noise ratio reaching 38.9251 dB, significantly outperforming existing methods.

20.
Biomolecules ; 14(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254711

ABSTRACT

Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), plays a critical role in blood pressure regulation. Genome-wide association studies have identified genetic susceptibility loci for hypertension in human lymphocyte-specific protein 1 (LSP1) gene. LSP1 is recognized as modulator of leukocyte extravasation, and endothelial permeability, however, the role of LSP1 in regulation of NO signaling within endothelial cells (ECs) remains unknown. The present study investigated the role of LSP1 in the regulation of eNOS expression and activity utilizing human macrovascular ECs in vitro and LSP1 knockout (KO) mice. In ECs, specific CRISPR-Cas9 genomic editing deleted LSP1 and caused downregulation of eNOS expression. LSP1 gain-of-function through adenovirus-mediated gene transfer was associated with enhanced expression of eNOS. Co-immunoprecipitation and confocal fluorescence microscopy revealed that eNOS and LSP1 formed a protein complex under basal conditions in ECs. Furthermore, LSP1 deficiency in mice promoted significant upregulation and instability of eNOS. Utilizing a mass-spectrometry-based bottom-up proteomics approach, we identified novel truncated forms of eNOS in immunoprecipitates from LSP1 KO aortae. Our experimental data suggest an important role of endothelial LSP1 in regulation of eNOS expression and activity within human ECs and murine vascular tissues.


Subject(s)
Endothelial Cells , Microfilament Proteins , Nitric Oxide Synthase Type III , Animals , Humans , Mice , Adenoviridae , Genome-Wide Association Study , Lymphocytes , Mice, Knockout , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Microfilament Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...