Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
J Am Chem Soc ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213649

ABSTRACT

Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.

2.
Environ Pollut ; 360: 124653, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095002

ABSTRACT

Protozoa play a pivotal role in the microbial cycle, and ciliated protozoan grazing habits are associated with dimethyl sulfide (DMS) cycle. Many studies have explored the impacts of nanoplastics (NPs) and microplastics (MPs) on ecotoxicological effects of ciliates. However, limited research exists on NPs and MPs influences on the production of organic sulfur compounds. The impact of NPs and MPs on the production of dimethyl sulfoxide (DMSO) and carbonyl sulfide (COS) remains unclear. Therefore, we examined the impacts of three concentrations (1 × 105, 5 × 105, and 1 × 106 items/mL) of polystyrene (PS) NPs (50 nm) and MPs (1 and 5 µm) on the ecotoxicology and DMS/dimethylsulfoniopropionate (DMSP)/DMSO/COS production in the ciliate Uronema marinum. NPs and MPs exposure were found to reduce the abundance, growth rate, volume, and biomass of U. marinum. Additionally, NPs and MPs increased the superoxide anion radical (O2˙─) production rates and malondialdehyde (MDA) contents (24 h), leading to a decline in glutathione (GSH) content and an ascend in superoxide dismutase (SOD) activity to mitigate the effects of reactive oxygen species (ROS). Exposure to PS NPs and MPs decreased the ingestion rates of algae by 7.5-14.4%, resulting in decreases in DMS production by 56.8-85.4%, with no significant impact on DMSO production. The results suggest a distinct pathway for the production of DMSO or COS compared to DMS. These findings help us to understand the NPs and MPs impacts on the marine ecosystem and organic sulfur compound yield, potentially influencing the global climate.

3.
Int J Surg ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093877

ABSTRACT

BACKGROUND: Perioperative management to maintain intraoperative haemodynamic stability is crucial during surgical treatment of pheochromocytomas and paragangliomas (PPGLs). Although approximately 70% of PPGLs carry pathogenic variants (PVs) in susceptibility genes, whether intraoperative haemodynamic instability (IHI) is associated with genetic background remains unclear. This study aimed to analyse IHI in patients with PPGL due to PVs in different genes. MATERIALS AND METHODS: This retrospective study recruited 756 patients with abdominal PPGL from two tertiary care centres. Clinical information including sex, age, catecholamine-associated signs and symptoms (CAS), tumour location and size, biochemistry, and perioperative characteristics were collected. Genetic mutations were investigated using next-generation sequencing. RESULTS: Among the 671 patients included in the analysis, 61.8% (415/671) had IHI. IHI was significantly associated with genetic background in patients with PPGL. Most (80.9%, 89/110) patients with PPGL due to PVs in HRAS suffered IHI. In contrast, only half (31/62) of patients with PPGL due to PVs in VHL had IHI. In the multivariate regression analysis, compared to those with negative genetic testing results, patients with PPGL due to PVs in HRAS (OR 3.82, 95% CI 2.187-6.679, P<0.001), the other cluster 2 genes (OR 1.95, 95% CI 1.287-2. 569, P< 0.05), and cluster 1 genes other than VHL (OR 2.35, 95% CI 1.338-4.111, P<0.05) were independent risk factors for IHI, while PVs in VHL was not independent risk factor (OR 1.09, 95% CI 0.605-1.953, P>=0.05). In addition, age at diagnosis of primary tumour, presenting of CAS, and tumour size were identified as independent factors for IHI. The nomogram illustrated that genetic background as sharing the largest contribution to IHI, followed by tumour size, age, and presenting of CAS. CONCLUSION: IHI is associated with the genetic background in patients with PPGL. The perioperative management of patients with PPGL can be personalized according to their genetic backgrounds, tumour size, age, and presenting of CAS.

4.
Environ Pollut ; 360: 124649, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095004

ABSTRACT

Dimethyl sulfide (DMS) is a prevalent volatile organic sulfur compound relevant to the global climate. Ecotoxicological effects of nano- and microplastics (NPs and MPs) on phytoplankton, zooplankton, and bacteria have been investigated by numerous studies. Yet, the influences of NPs/MPs on dimethylated sulfur compounds remains understudied. Herein, we investigated the impacts of polystyrene (PS) NPs/MPs (80 nm, 1 µm, and 10 µm) on zooplankton grazing, chlorophyll a (Chl a) concentration, bacterial community, dimethylsulfoniopropionate (DMSP), and DMS production in the microcosms. Our findings revealed that rotifer grazing increased the production of DMS in the absence of NPs/MPs but did not promote DMS production when exposed to NPs/MPs. The ingestion rates of the rotifer and copepod exposed to NPs/MPs at high concentrations were significantly reduced. NPs/MPs exposure significantly decreased DMS levels in the treatments with rotifers compared to the animal controls. In the bacterial microcosms, smaller NPs/MPs sizes were more detrimental to Chl a concentrations compared to larger sizes. The study revealed a stimulatory effect on Chl a concentrations, DMSPd concentrations, and bacterial abundances when exposed to 10 µm MP with low concentrations. The effects of NPs/MPs on DMS concentrations were both dose- and size-dependent, with NPs showing greater toxicity compared to larger MPs. NPs/MPs led to changes in bacterial community compositions, dependent on both dosage and size. NPs caused a notable decrease in the alpha diversities and richness of bacteria compared to MPs. These results provide insights into the influences of NPs/MPs on food webs, and subsequently organic sulfur compounds cycles.

5.
Angew Chem Int Ed Engl ; : e202407928, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022842

ABSTRACT

Although highly appealing for rapid access of molecular complexity, multi-functionalization of alkenes that allows incorporation of more than two functional groups remains a prominent challenge. Herein, we report a novel strategy that merges dipolar cycloaddition with photoredox promoted radical ring-opening remote C(sp3)-H functionalization, thus enabling a smooth 1,2,5-trifunctionalization of unactivated alkenes. A highly regioselective [3+2] cycloaddition anchors a reaction trigger onto alkene substrates. The subsequent halogen atom transfer (XAT) selectively initiates ring-opening process, which is followed by a series of 1,5-hydrogen atom transfer (1,5-HAT) and intermolecular fluorine atom transfer (FAT) events. With this method, site-selective introduction of three different functional groups is accomplished and a broad spectrum of valuable ß-hydroxyl-ε-fluoro-nitrile products are synthesized from readily available terminal alkenes.

6.
Sci Bull (Beijing) ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39060214

ABSTRACT

Direct synthesis of graphene on nonmetallic substrates via chemical vapor deposition (CVD) has become a frontier research realm targeting transfer-free applications of CVD graphene. However, the stable mass production of graphene with a favorable growth rate and quality remains a grand challenge. Herein, graphene glass fiber fabric (GGFF) was successfully developed through the controllable growth of graphene on non-catalytic glass fiber fabric, employing a synergistic binary-precursor CVD strategy to alleviate the dilemma between growth rate and quality. The binary precursors consisted of acetylene and acetone, where acetylene with high decomposition efficiency fed rapid graphene growth while oxygen-containing acetone was adopted for improving the layer uniformity and quality. Notably, the bifurcating introducing-confluent premixing (BI-CP) system was self-built for the controllable introduction of gas and liquid precursors, enabling the stable production of GGFF. GGFF features solar absorption and infrared emission properties, based on which the self-adaptive dual-mode thermal management film was developed. This film can automatically switch between heating and cooling modes by spontaneously perceiving the temperature, achieving excellent thermal management performances with heating and cooling power of ∼501.2 and ∼108.6 W m-2, respectively. These findings unlock a new strategy for the large-scale batch production of graphene materials and inspire advanced possibilities for further applications.

7.
Sleep Breath ; 28(4): 1731-1742, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772968

ABSTRACT

PURPOSE: Major Depressive Disorder (MDD) and Insomnia Disorder (ID) are prevalent psychiatric conditions often occurring concurrently, leading to substantial impairment in daily functioning. Understanding the neurobiological underpinnings of these disorders and their comorbidity is crucial for developing effective interventions. This study aims to analyze changes in functional connectivity within attention networks and default mode networks in patients with depression and insomnia. METHODS: The functional connectivity alterations in individuals with MDD, ID, comorbid MDD and insomnia (iMDD), and healthy controls (HC) were assessed from a cohort of 174 participants. They underwent rs-fMRI scans, demographic assessments, and scale evaluations for depression and sleep quality. Functional connectivity analysis was conducted using region-of-interest (ROI) and whole-brain methods. RESULTS: The MDD and iMDD groups exhibited higher Hamilton Depression Scale (HAMD) scores compared to HC and ID groups (P < 0.001). Both ID and MDD groups displayed enhanced connectivity between the left and right orbital frontal cortex compared to HC (P < 0.05), while the iMDD group showed reduced connectivity compared to HC and ID groups (P < 0.05). In the left insula, reduced connectivity with the right medial superior frontal gyrus was observed across patient groups compared to HC (P < 0.05), with the iMDD group showing increased connectivity compared to MDD (P < 0.05). Moreover, alterations in functional connectivity between the left thalamus and left temporal pole were found in iMDD compared to HC and MDD (P < 0.05). Correlation analyses revealed associations between abnormal connectivity and symptom severity in MDD and ID groups. CONCLUSIONS: Our findings demonstrate distinct patterns of altered functional connectivity in individuals with MDD, ID, and iMDD compared to healthy controls. These findings contribute to a better understanding of the pathophysiology of depression and insomnia, which could be used as a reference for the diagnosis and treatments of these patients.


Subject(s)
Default Mode Network , Depressive Disorder, Major , Magnetic Resonance Imaging , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Male , Female , Adult , Depressive Disorder, Major/physiopathology , Middle Aged , Default Mode Network/physiopathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Attention/physiology , Comorbidity , Brain/physiopathology , Brain/diagnostic imaging , Connectome
8.
Environ Pollut ; 351: 124084, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697245

ABSTRACT

Due to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 µm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production. The results revealed that high concentrations of MPs and NPs inhibited the growth, carotenoid (Car), and Chl a concentrations of E. huxleyi. However, short-time exposure to low concentrations of PS MPs and NPs stimulated the growth of E. huxleyi. Furthermore, high concentrations of MPs and NPs resulted in an increase in the superoxide anion radical (O2.-) production rate and a decrease in the malondialdehyde (MDA) content compared with the low concentrations. Exposure to MPs and NPs at 5 mg L-1 induced superoxide dismutase (SOD) activity as a response to scavenging ROS. High concentrations of MPs and NPs significantly inhibited the production of DMSP and DMS. The findings of this study support the potential ecotoxicological impacts of MPs and NPs on algal growth, antioxidant system, and dimethylated sulfur compounds production, which maybe potentially impact the global climate.


Subject(s)
Antioxidants , Haptophyta , Reactive Oxygen Species , Sulfides , Sulfonium Compounds , Water Pollutants, Chemical , Antioxidants/metabolism , Sulfonium Compounds/metabolism , Haptophyta/growth & development , Haptophyta/metabolism , Haptophyta/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Chlorophyll/metabolism , Superoxide Dismutase/metabolism , Nanoparticles/toxicity , Polystyrenes/toxicity
9.
Physiol Meas ; 45(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38772397

ABSTRACT

Objective. Acute hypotension episode (AHE) is one of the most critical complications in intensive care unit (ICU). A timely and precise AHE prediction system can provide clinicians with sufficient time to respond with proper therapeutic measures, playing a crucial role in saving patients' lives. Recent studies have focused on utilizing more complex models to improve predictive performance. However, these models are not suitable for clinical application due to limited computing resources for bedside monitors.Approach. To address this challenge, we propose an efficient lightweight dilated shuffle group network. It effectively incorporates shuffling operations into grouped convolutions on the channel and dilated convolutions on the temporal dimension, enhancing global and local feature extraction while reducing computational load.Main results. Our benchmarking experiments on the MIMIC-III and VitalDB datasets, comprising 6036 samples from 1304 patients and 2958 samples from 1047 patients, respectively, demonstrate that our model outperforms other state-of-the-art lightweight CNNs in terms of balancing parameters and computational complexity. Additionally, we discovered that the utilization of multiple physiological signals significantly improves the performance of AHE prediction. External validation on the MIMIC-IV dataset confirmed our findings, with prediction accuracy for AHE 5 min prior reaching 93.04% and 92.04% on the MIMIC-III and VitalDB datasets, respectively, and 89.47% in external verification.Significance. Our study demonstrates the potential of lightweight CNN architectures in clinical applications, providing a promising solution for real-time AHE prediction under resource constraints in ICU settings, thereby marking a significant step forward in improving patient care.


Subject(s)
Hospitalization , Hypotension , Intensive Care Units , Neural Networks, Computer , Humans , Hypotension/physiopathology , Hypotension/diagnosis , Acute Disease
10.
Clin Endocrinol (Oxf) ; 101(3): 234-242, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38606576

ABSTRACT

OBJECTIVE: Paragangliomas of the urinary bladder (UBPGLs) are rare neuroendocrine tumours and pose a diagnostic and surgical challenge. It remains unclear what factors contribute to a timely presurgical diagnosis. The purpose of this study is to identify factors contributing to missing the diagnosis of UBPGLs before surgery. DESIGN, PATIENTS AND MEASUREMENTS: A total of 73 patients from 11 centres in China, and 51 patients from 6 centres in Europe and 1 center in the United States were included. Clinical, surgical and genetic data were collected and compared in patients diagnosed before versus after surgery. Logistic regression analysis was used to identify clinical factors associated with initiation of presurgical biochemical testing. RESULTS: Among all patients, only 47.6% were diagnosed before surgery. These patients were younger (34.0 vs. 54.0 years, p < .001), had larger tumours (2.9 vs. 1.8 cm, p < .001), and more had a SDHB pathogenic variant (54.7% vs. 11.9%, p < .001) than those diagnosed after surgery. Patients with presurgical diagnosis presented with more micturition spells (39.7% vs. 15.9%, p = .003), hypertension (50.0% vs. 31.7%, p = .041) and catecholamine-related symptoms (37.9% vs. 17.5%, p = .012). Multivariable logistic analysis revealed that presence of younger age (<35 years, odds ratio [OR] = 6.47, p = .013), micturition spells (OR = 6.79, p = .007), hypertension (OR = 3.98, p = .011), and sweating (OR = 41.72, p = .013) increased the probability of initiating presurgical biochemical testing. CONCLUSIONS: Most patients with UBPGL are diagnosed after surgery. Young age, hypertension, micturition spells and sweating are clues in assisting to initiate early biochemical testing and thus may establish a timely presurgical diagnosis.


Subject(s)
Paraganglioma , Urinary Bladder Neoplasms , Humans , Middle Aged , Retrospective Studies , Urinary Bladder Neoplasms/diagnosis , Female , Male , Adult , Paraganglioma/diagnosis , Paraganglioma/surgery , Europe , United States , Aged , China
11.
Biochem Biophys Res Commun ; 712-713: 149941, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38643718

ABSTRACT

While diosgenin has been demonstrated effective in various cardiovascular diseases, its specific impact on treating heart attacks remains unclear. Our research revealed that diosgenin significantly improved cardiac function in a myocardial infarction (MI) mouse model, reducing cardiac fibrosis and cell apoptosis while promoting angiogenesis. Mechanistically, diosgenin upregulated the Hand2 expression, promoting the proliferation and migration of endothelial cells under hypoxic conditions. Acting as a transcription factor, HAND2 activated the angiogenesis-related gene Aggf1. Conversely, silencing Hand2 inhibited the diosgenin-induced migration of hypoxic endothelial cells and angiogenesis. In summary, these findings provide new insights into the protective role of diosgenin in MI, validating its effect on angiogenic activity and providing a theoretical basis for clinical treatment strategies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Diosgenin , Mice, Inbred C57BL , Myocardial Infarction , Neovascularization, Physiologic , Animals , Humans , Male , Mice , Angiogenesis , Apoptosis/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Diosgenin/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/physiopathology , Neovascularization, Physiologic/drug effects
12.
Mar Environ Res ; 197: 106481, 2024 May.
Article in English | MEDLINE | ID: mdl-38593647

ABSTRACT

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Subject(s)
Seawater , Sulfonium Compounds , Animals , Seawater/chemistry , Sulfur/metabolism , Sulfonium Compounds/chemistry , Sulfonium Compounds/metabolism , Sulfides/metabolism , Bacteria/metabolism , Phytoplankton , China , Zooplankton/metabolism
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124312, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38688210

ABSTRACT

The ubiquity of diverse material entities in environmental matrices renders the deployment of unifunctional fluorescent indicators inadequate. Consequently, this study introduces a ratiometric dual-emission fluorescent sensor (Probe CP), synthesized by conjugating phenothiazine coumarin to hydroxycoumarin through a piperazine linker for concurrent detection of HClO and H2S. Upon interaction with HClO, the phenothiazine unit's sulfur atom undergoes oxidation to sulfoxide, facilitating a shift from red to green fluorescence in a ratiometric manner. Concurrently, at the opposite terminus of Probe CP, 2,4-dinitroanisole serves as the reactive moiety for H2S recognition; it restores the blue emission characteristic of 7-hydroxycoumarin while maintaining the red fluorescence emanating from phenothiazine coumarin as an internal standard for ratio-based assessment. Exhibiting elevated specificity and sensitivity coupled with minimal detection thresholds (0.0506 µM for HClO and 1.7292 µM for H2S) alongside rapid equilibration periods (3 min for HClO and half an hour for H2S), this sensor was efficaciously employed in cellular environments and within zebrafish models as well as imaging applications pertaining to alcohol-induced hepatic injury in murine subjects.


Subject(s)
Coumarins , Fluorescent Dyes , Hydrogen Sulfide , Phenothiazines , Zebrafish , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Coumarins/chemistry , Coumarins/chemical synthesis , Hydrogen Sulfide/analysis , Mice , Spectrometry, Fluorescence/methods , Humans
14.
Curr Pharm Biotechnol ; 25(15): 2012-2021, 2024.
Article in English | MEDLINE | ID: mdl-38284738

ABSTRACT

Ferroptosis is a newly discovered form of programmed cell death characterized by iron overload, ROS accumulation, and lipid peroxidation. It is distinguished by unique morphological, biochemical, and genetic features and stands apart from other known regulated cell death mechanisms. Studies have demonstrated a close association between ferroptosis and various cancers, including liver cancer, lung cancer, renal cell carcinoma, colorectal cancer, pancreatic cancer, and ovarian cancer. Inducing ferroptosis has shown promising results in inhibiting tumor growth and reversing tumor progression. However, the challenge lies in regulating ferroptosis in vivo due to the scarcity of potent compounds that can activate it. Integrating emerging biomedical discoveries and technological innovations with conventional therapies is imperative. Notably, considerable progress has been made in cancer treatment by leveraging immunotherapy and nanotechnology to trigger ferroptosis. This review explores the relationship between ferroptosis and emerging immunotherapies and nanotechnologies, along with their potential underlying mechanisms, offering valuable insights for developing novel cancer treatment strategies.


Subject(s)
Ferroptosis , Immunotherapy , Neoplasms , Ferroptosis/drug effects , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Immunotherapy/methods , Animals , Nanotechnology/methods
15.
Environ Pollut ; 344: 123308, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185352

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) have gained global concern due to their detrimental effects on marine organisms. We investigated the effects of 80 nm polystyrene (PS) NPs on life history traits, ingestion, and dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) production in the rotifer Brachionus plicatilis. Fluorescently labeled 80 nm PS NPs were ingested by the rotifer B. plicatilis and accumulated in the digestive tract. The lethal rates of B. plicatilis exposed to NPs were dose-dependent. High concentrations of PS NPs exposure had negative effects on developmental duration, leading to prolonged embryonic development and pre-reproductive periods, shortened reproductive period, post-reproductive period, and lifespan in B. plicatilis. High concentrations of PS NPs exposure inhibited life table demographic parameters such as age-specific survivorship and fecundity, generation time, net reproductive rate, and life expectancy. Consequently, the population of B. plicatilis was adversely impacted. Furthermore, exposure to PS NPs resulted in a reduced ingestion rate in B. plicatilis, as well as a decreased in DMS, particulate DMSP (DMSPp) concentration, and DMSP lyase activity (DLA), which exhibited a dose-response relationship. B. plicatilis grazing promoted DLA and therefore increased DMS production. PS NPs exposure caused a decline in the increased DMS induced by rotifer grazing. Our results help to understand the ecotoxicity of NPs on rotifer and their impact on the biogeochemical cycle of dimethylated sulfur compounds.


Subject(s)
Life History Traits , Rotifera , Sulfides , Water Pollutants, Chemical , Animals , Microplastics , Plastics/pharmacology , Polystyrenes/pharmacology , Eating , Water Pollutants, Chemical/toxicity
17.
Chemosphere ; 350: 141091, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171399

ABSTRACT

Stabilization techniques are vital in controlling Cd soil pollution. Nano zero valent iron (nZVI) has been extensively utilized for Cd remediation owing to its robust adsorption and reactivity. However, the environmental stress-induced stability of Cd after nZVI addition remains unclear. A pot experiment was conducted to evaluate the Cd bioavailability in continuously flooded (130 d) soil after stabilization with nZVI. The findings indicated that nZVI application did not result in a decline in Cd concentration in rice, as compared to the no-nZVI control. Additionally, nZVI simultaneously increased the available Cd concentration, iron-manganese oxide-bound (OX) Mn fraction, and relative abundance of Fe(III)-reducing bacteria, but it decreased OX-Cd and Mn availability in soil. Cadmium in rice tissues was positively correlated with the available Cd in soil. The results of subsequent adsorption tests demonstrated that CdO was the product of Cd adsorption by the nZVI aging products. Conversely, Mn2+ decreased the adsorption capacity of Cd-containing solutions. These results underscore the crucial role of both biotic and abiotic factors in undermining the stabilization of nZVI under continuous flooding conditions. This study offers novel insights into the regulation of nZVI-mediated Cd stabilization efficiency in conjunction with biological inhibitors and functional modification techniques.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Iron , Ferric Compounds , Cadmium/analysis , Soil , Soil Pollutants/analysis
18.
Gastric Cancer ; 27(1): 49-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897508

ABSTRACT

BACKGROUND: Opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) has been demonstrated to play vital roles in development and progression of tumors such as gastric cancer (GC). However, the detailed molecular mechanism of OIP5-AS1 has not been completely elucidated. Our study aimed to investigate the role and the epigenetic regulation mechanism of OIP5-AS1 in GC. METHODS: OIP5-AS1 expression in GC tissues was detected by RT-qPCR. Loss- and gain-of-function experiments were conducted to assess the biological function of OIP5-AS1 in vitro and in vivo. The interaction of OIP5-AS1 with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) or heterogeneous nuclear nucleoprotein A1 (hnRNPA1) was verified by bioinformatics analysis, RNA pull-down assays, and RNA immunoprecipitation assays. RESULTS: In this study, we identified that OIP5-AS1 is specifically overexpressed in GC tumor tissues and cell lines and correlated with a poor prognosis. The loss of OIP5-AS1 suppressed the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and glycolysis of GC cells, but the ectopic expression of OIP5-AS1 had the opposite impact. Meanwhile, knockdown of OIP5-AS1 inhibited tumor growth in patient-derived xenograft models, as well as repressed tumor metastasis. Mechanistically, IGF2BP3 could bind to OIP5-AS1 by N6-methyladenosine (m6A) modification sites on OIP5-AS1, thereby stabilizing OIP5-AS1. Moreover, OIP5-AS1 prevented Trim21-mediated ubiquitination and degradation of hnRNPA1, stabilizing hnRNPA1 protein and promoting the malignant progression of GC by regulating PKM2 signaling pathway. CONCLUSIONS: In conclusion, this study highlighted that OIP5-AS1 is an oncogenic m6A-modified long non-coding RNA (lncRNA) in GC and that IGF2BP3/OIP5-AS1/hnRNPA1 axis may provide a potential diagnostic or prognostic target for GC.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glycolysis , MicroRNAs/genetics , Stomach Neoplasms/genetics
19.
J Clin Endocrinol Metab ; 109(2): 351-360, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37708346

ABSTRACT

CONTEXT: Intraoperative hemodynamic instability (HDI) can lead to cardiovascular and cerebrovascular complications during surgery for pheochromocytoma/paraganglioma (PPGL). OBJECTIVES: We aimed to assess the risk of intraoperative HDI in patients with PPGL to improve surgical outcome. METHODS: A total of 199 consecutive patients with PPGL confirmed by surgical pathology were retrospectively included in this study. This cohort was separated into 2 groups according to intraoperative systolic blood pressure, the HDI group (n = 101) and the hemodynamic stability (HDS) group (n = 98). It was also divided into 2 subcohorts for predictive modeling: the training cohort (n = 140) and the validation cohort (n = 59). Prediction models were developed with both the ensemble machine learning method (EL model) and the multivariate logistic regression model using body composition parameters on computed tomography, tumor radiomics, and clinical data. The efficiency of the models was evaluated with discrimination, calibration, and decision curves. RESULTS: The EL model showed good discrimination between the HDI group and HDS group, with an area under the curve of (AUC) of 96.2% (95% CI, 93.5%-99.0%) in the training cohort, and an AUC of 93.7% (95% CI, 88.0%-99.4%) in the validation cohort. The AUC values from the EL model were significantly higher than the logistic regression model, which had an AUC of 74.4% (95% CI, 66.1%-82.6%) in the training cohort and an AUC of 74.2% (95% CI, 61.1%-87.3%) in the validation cohort. Favorable calibration performance and clinical applicability of the EL model were observed. CONCLUSION: The EL model combining preoperative computed tomography-based body composition, tumor radiomics, and clinical data could potentially help predict intraoperative HDI in patients with PPGL.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Vascular Diseases , Humans , Pheochromocytoma/diagnostic imaging , Pheochromocytoma/surgery , Radiomics , Retrospective Studies , Adrenal Gland Neoplasms/diagnostic imaging , Adrenal Gland Neoplasms/surgery , Body Composition , Machine Learning
20.
Int Immunopharmacol ; 127: 111372, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38118314

ABSTRACT

Mesangial proliferative glomerulonephritis (MsPGN) and its related rat model Thy-1 nephritis (Thy-1N) are associated with C5b-9 deposition and are characterized by proliferation of glomerular mesangial cell (GMC) and expansion of extracellular matrix (ECM) expansion, alongside overexpression of multiple growth factors. Although fibroblast growth factor 1 (FGF1), platelet-derived growth factor alpha (PDGFα), and transforming growth factor beta 1 (TGF-ß1) are well known for their proproliferative and profibrotic roles, the molecular mechanisms responsible for regulating the expression of these growth factors have not been thoroughly elucidated. In this study, we found that sublytic C5b-9 induction of sex-determining region Y-box 9 (SOX9) transactivated FGF1, PDGFα, and TGF-ß1 genes in GMCs, resulting in a significant increase in their mRNA and protein levels. Besides, sublytic C5b-9 induction of activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylated SOX9 at serine 181 and serine 64, which enhanced SOX9's ability to transactivate FGF1, PDGFα, and TGF-ß1 genes in GMCs. Furthermore, we demonstrated that inhibiting ERK1/2 activation or silencing either ERK1/2 or SOX9 gene led to reduced SOX9 phosphorylation, decreased generation of FGF1, PDGFα, and TGF-ß1, and ameliorated glomerular injury in rat Thy-1N. Overall, these findings suggest that expression of FGF1, PDGFα, and TGF-ß1 is promoted by ERK1/2-mediated phosphorylation of SOX9, which may provide a valuable insight into the pathogenesis of MsPGN and offer a potential target for the development of novel treatment strategies for MsPGN.


Subject(s)
Fibroblast Growth Factor 1 , Nephritis , Rats , Animals , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Phosphorylation , Rats, Sprague-Dawley , Complement Membrane Attack Complex/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , MAP Kinase Signaling System , Nephritis/metabolism , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL