Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 193: 32-39, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28188987

ABSTRACT

Phosphate-Fe(II) precipitation induced by Fe(III) reduction during the anaerobic digestion of excess activated sludge was investigated for the removal of phosphorus and its possible recovery. The experiments were conducted with three Fe(III) sources at 35 °C and 55 °C. The results show that ferrihydrite-Fe(III) was effectively reduced during the anaerobic sludge digestion by 63% and 96% under mesophilic and thermophilic conditions, respectively. Whereas FeCl3-Fe(III) was only mesophilically reducible and the reduction of hematite-Fe(III) was unnoticeable at either temperature. Efficient precipitation of vivianite was not observed although high saturation index values, e.g., >14 (activity reduction not considered), had been reached. This reveals the complexity of vivianite precipitation in anaerobic digestion systems; for example, Fe(II) complexation and organic interference could not be ignored. With ferrihydrite amendments at a Fe/TP of 1.5, methane production from sludge digestion was reduced by 35.1% at 35 °C, and was unaffected when the digestion temperature went up to 55 °C. But, acidic FeCl3 severely inhibited the methane production and consequently the sludge biomass degradation.


Subject(s)
Ferric Compounds , Sewage , Anaerobiosis , Bioreactors , Iron , Methane/biosynthesis , Phosphates , Waste Disposal, Fluid
2.
Environ Sci Technol ; 40(16): 5022-8, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16955902

ABSTRACT

To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risks associated with swimming, the near-shore waters of Lake Michigan and two tributaries discharging into it were examined for bacterial indicators of human fecal pollution. The enterococcus human fecal pollution marker, which targets a putative virulence factor--the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) in the tributaries draining into Lake Michigan and in 6/30 samples (20%) in Lake Michigan beaches. This was indicative of human fecal pollution being transported in the tributaries and occurrence at Lake Michigan beaches. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, E. coli and enterococci) was used. Enterococci appear to survive longer than E. coli, which was described using an overall first-order inactivation coefficient in the range 0.5-2.0 per day. Our analysis suggests that the majority of fecal indicator bacteria variation can be explained based on loadings from the tributaries. Sunlight is a major contributor to inactivation in the surf-zone and the formulation based on sunlight, temperature and sedimentation is preferred over the first-order inactivation formulation.


Subject(s)
Enterococcus/metabolism , Environmental Monitoring/methods , Escherichia coli/metabolism , Water Microbiology , Environment , Feces , Fresh Water , Indiana , Michigan , Models, Chemical , Models, Theoretical , Sewage , Temperature , Waste Disposal, Fluid , Water Pollution
3.
Article in English | MEDLINE | ID: mdl-15030141

ABSTRACT

A one-dimensional mathematical model was developed to analyze the influence of different physical and chemical parameters on the performance of an encapsulated phosphate buffer for controlling pH and enhancing a pH-dependent process in a soil column. Three scenarios were investigated where base equivalents are produced through the degradation of the target compound (scenario I), through reactions in the matrix (scenario II), and a combination of both mechanisms (scenario III). In all three scenarios, the production of base equivalents is countered by the release of the acidic core of the encapsulated phosphate, resulting in an enhanced removal of the target compound. A sensitivity analysis on the model shows that under the conditions investigated, the removal of the target compound is dependent on the flowrate, porosity. dispersion coeflicient, reaction rate constants, mass of added capsules, and the point of addition of the capsules. The approach can be used to analyze scenarios where encapsulated buffers can control pH and optimize pH-dependent processes in a soil column.


Subject(s)
Models, Theoretical , Phosphates/chemistry , Soil , Buffers , Hydrogen-Ion Concentration
4.
Article in English | MEDLINE | ID: mdl-14672318

ABSTRACT

A one-dimensional mathematical model was developed to analyze the influence of different physical and chemical parameters on the performance of an encapsulated phosphate buffer for controlling pH and enhancing a pH-dependent process in a soil column. Three scenarios were investigated where base equivalents are produced through the degradation of the target compound (scenario I), through reactions in the matrix (scenario II), and a combination of both mechanisms (scenario III). In all three scenarios, the production of base equivalents is countered by the release of the acidic core of the encapsulated phosphate, resulting in an enhanced removal of the target compound. A sensitivity analysis on the model shows that under the conditions investigated, the removal of the target compound is dependent on the flowrate, porosity, dispersion coefficient, reaction rate constants, mass of added capsules, and the point of addition of the capsules. The approach can be used to analyze scenarios where encapsulated buffers can control pH and optimize pH-dependent processes in a soil column.


Subject(s)
Models, Theoretical , Phosphates/chemistry , Buffers , Hydrogen-Ion Concentration , Porosity , Soil Pollutants , Water Movements , Water Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...