Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38730751

ABSTRACT

Geopolymer concrete (GPC) represents an innovative green and low-carbon construction material, offering a viable alternative to ordinary Portland cement concrete (OPC) in building applications. However, existing studies tend to overlook the recyclability aspect of GPC for future use. Various structural applications necessitate the use of concrete with distinct strength characteristics. The recyclability of the parent concrete is influenced by these varying strengths. This study examined the recycling potential of GPC across a spectrum of strength grades (40, 60, 80, and 100 MPa, marked as C40, C60, C80, and C100) when subjected to freeze-thaw conditions. Recycling 5-16 mm recycled geopolymer coarse aggregate (RGAs) from GPC prepared from 5 to 16 mm natural coarse aggregates (NAs). The cementitious material comprised 60% metakaolin and 40% slag, with natural gravel serving as the NAs, and the alkali activator consisting of sodium hydroxide solution and sodium silicate solution. The strength of the GPC was modulated by altering the Na/Al ratio. After 350 freeze-thaw cycles, the GPC specimens underwent crushing, washing, and sieving to produce RGAs. Subsequently, their physical properties (apparent density, water absorption, crushing index, and attached mortar content and microstructure (microhardness, SEM, and XRD) were thoroughly examined. The findings indicated that GPC with strength grades of C100, C80, and C60 were capable of enduring 350 freeze-thaw cycles, in contrast to C40, which did not withstand these conditions. RGAs derived from GPC of strength grades C100 and C80 complied with the criteria for Class II recycled aggregates, whereas RGAs produced from GPC of strength grade C60 aligned with the Class III level. A higher-strength grade in the parent concrete correlated with enhanced performance characteristics in the resulting recycled aggregates.

2.
Chin Med J (Engl) ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37963715

ABSTRACT

BACKGROUND: Alterations in the placental expression of glucose transporters (GLUTs), the crucial maternal-fetal nutrient transporters, have been found in women with hyperglycemia in pregnancy (HIP). However, there is still uncertainty about the underlying effect of the high-glucose environment on placental GLUTs expression in HIP. METHODS: We quantitatively evaluated the activity of mammalian target of rapamycin (mTOR) and expression of GLUTs (GLUT1, GLUT3, and GLUT4) in the placenta of women with normal pregnancies (CTRL, n = 12) and pregnant women complicated with poorly controlled type 2 diabetes mellitus (T2DM, n = 12) by immunohistochemistry. In addition, BeWo cells were treated with different glucose concentrations to verify the regulation of hyperglycemia. Then, changes in the expression of GLUTs following the activation or suppression of the mTOR pathway were also assessed using MHY1485/rapamycin (RAPA) treatment or small interfering RNA (siRNA)-mediated silencing approaches. Moreover, we further explored the alteration and potential upstream regulatory role of methyltransferase-like 3 (METTL3) when exposed to hyperglycemia. RESULTS: mTOR, phosphorylated mTOR (p-mTOR), and GLUT1 protein levels were upregulated in the placenta of women with T2DM compared with those CTRL. In BeWo cells, mTOR activity increased with increasing glucose concentration, and the expression of GLUT1, GLUT3, and GLUT4 as well as GLUT1 cell membrane translocation were upregulated by hyperglycemia to varying degrees. Both the drug-mediated and genetic depletion of mTOR signaling in BeWo cells suppressed GLUTs expression, whereas MHY1485-induced mTOR activation upregulated GLUTs expression. Additionally, high glucose levels upregulated METTL3 expression and nuclear translocation, and decreasing METTL3 levels suppressed GLUTs expression and mTOR activity and vice versa. Furthermore, in METTL3 knockdown BeWo cells, the inhibitory effect on GLUTs expression was eliminated by activating the mTOR signaling pathway using MHY1485. CONCLUSION: High-glucose environment-induced upregulation of METTL3 in trophoblasts regulates the expression of GLUTs through mTOR signaling, contributing to disordered nutrient transport in women with HIP.

3.
Nat Prod Res ; : 1-7, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37850480

ABSTRACT

Seven flavanones, including two new compounds coupled with styryl units, communins C (1) and D (2), as well as five known compounds, were isolated from Polytrichum commune Hedw. The planar structures of all compounds were determined using extensive spectroscopic analysis. The absolute configurations of two new compounds were assigned by comparing experimental ECD with calculated ECD. The cytotoxicity of all isolates against HCT-116, BGC803, MCF7 and PANC-1 cell lines was evaluated. Communin D exhibited significant cytotoxic activity on BGC803 cells with an IC50 value of 9.3 µM.

4.
World J Clin Cases ; 11(10): 2254-2259, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37122528

ABSTRACT

BACKGROUND: Neonatal hyperinsulinism can result from perinatal stress, genetic disorders, or syndromes, which can lead to persistent or intractable hypoglycemia in newborns. Mutations in the ABCC8 gene result in abnormal functioning of potassium channel proteins in pancreatic ß-cells, leading to an overproduction of insulin and congenital hyperinsulinemia. CASE SUMMARY: We report a case of a high-birth-weight infant with postnatal hypoglycemia and hyperinsulinemia, whose mother had pregestational diabetes mellitus with poor glycemic control and whose sister had a similar history at birth. Whole-exome sequencing revealed a new mutation in the ABCC8 gene in exon 8 (c.1257T>G), which also occurred in his sister and mother; thus, the patient was diagnosed with neonatal hyperinsulinism with an ABCC8 mutation. With oral diazoxide treatment, the child's blood glucose returned to normal, and the pediatrician gradually discontinued treatment because of the child's good growth and development. CONCLUSION: We report a new mutation locus in the ABCC8 gene. This mutation locus warrants attention for genetic disorders and long-term prognoses of hypoglycemic children.

5.
DNA Cell Biol ; 41(6): 564-574, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35593918

ABSTRACT

The sugars will eventually be exported transporters (SWEETs) gene family is a new type of sugar transporters, which plays an important role in plant growth and development, physiological metabolism, and abiotic stress. In this study, we used quantitative real-time PCR to analyze the expression of ZmSWEET15a gene in different organs of maize and under different abiotic stresses. The results showed that ZmSWEET15a was expressed in roots, stems, leaves, and grains, with the highest expression level in leaves, which was highly correlated with leaf development. Under the treatment of polyethylene glycol (PEG), NaCl, H2O2, and abscisic acid stress, the expression of ZmSWEET15a was upregulated, while under the treatment of cold stress, the expression of ZmSWEET15a was inhibited. In sugar-specific experiments, we found that sucrose was the most effective carbon source for maize seed germination. The expression analysis of ZmSWEET15a in different carbon sources suggested that the expression of ZmSWEET15a was more likely to be induced by sucrose. Overexpression of ZmSWEET15a in maize plants could reduce the sucrose content in leaves and increase the sucrose content in grains. The heterologous expression of ZmSWEET15a in the yeast mutant strain SUSY7/ura indicated that ZmSWEET15a is a sucrose transporter and pH independent. This study provides new insight into sugar transport and carbohydrate partitioning in maize and other crops, and provide more genetic information for improving crop quality at the molecular level.


Subject(s)
Gene Expression Regulation, Plant , Zea mays , Carbon/metabolism , Hydrogen Peroxide , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Sucrose/metabolism , Sugars/metabolism , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...