Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Planta ; 259(2): 45, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281265

ABSTRACT

MAIN CONCLUSION: The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.


Subject(s)
Genome, Chloroplast , Pinus , Phylogeny , Pinus/genetics , Genome, Chloroplast/genetics , Evolution, Molecular , DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , Nucleotides , Demography , Genetic Variation
2.
Mitochondrial DNA B Resour ; 8(6): 643-647, 2023.
Article in English | MEDLINE | ID: mdl-37312972

ABSTRACT

Gypsophila huashanensis Y. W. Tsui & D. Q. Lu (Caryophyllaceae) is an endemic herb species to the Qinling Mountains in China. In this study, we characterized its whole plastid genome using the Illumina sequencing platform. The complete plastid genome of G. huashanensis is 152,457 bp in length, including a large single-copy DNA region of 83,476 bp, a small single-copy DNA region of 17,345 bp, and a pair of inverted repeat DNA sequences of 25,818 bp. The genome contains 130 genes comprising 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Evolutionary analysis showed that the non-coding regions of Caryophyllaceae exhibit a higher level of divergence than the exon regions. Gene site selection analysis suggested that 11 coding protein genes (accD, atpF, ndhA, ndhB, petB, petD, rpoCl, rpoC2, rps16, ycfl, and ycf2) have some sites under protein sequence evolution. Phylogenetic analysis showed that G. huashanensis is most closely related to the congeneric species G. oldhamiana. These results are very useful for studying phylogenetic evolution and species divergence in the family Caryophyllaceae.

3.
Mol Phylogenet Evol ; 182: 107736, 2023 05.
Article in English | MEDLINE | ID: mdl-36805473

ABSTRACT

Hybridization is recognized as a major force in species evolution and biodiversity formation, generally leading to the origin and differentiation of new species. Multiple hybridization events cannot easily be reconstructed, yet they offer the potential to study a number of evolutionary processes. Here, we used nuclear expressed sequence tag-simple sequence repeat and large-scale single nucleotide polymorphism variation data, combined with niche analysis, to investigate the putative independent hybridization events in Notopterygium, a group of perennial herb plants endemic to China. Population genomic analysis indicated that the four studied species are genetically well-delimited and that N. forrestii and N. oviforme have originated by hybridization. According to Approximate Bayesian Computation, the best-fit model involved the formation of N. forrestii from the crossing of N. franchetii and N. incisum, with N. forrestii further backcrossing to N. franchetii to form N. oviforme. The niche analyses indicated that niche divergence [likely triggered by the regional climate changes, particularly the intensification of East Asian winter monsoon, and tectonic movements (affecting both Qinghai-Tibetan Plateau and Qinling Mountains)] may have promoted and maintained the reproductive isolation among hybrid species. N. forrestii shows ecological specialization with respect to their parental species, whereas N. oviforme has completely shifted its niche. These results suggested that the climate and environmental factors together triggered the two-step hybridization of the East Asia herb plants. Our study also emphasizes the power of genome-wide SNPs for investigating suspected cases of hybridization, particularly unravelling old hybridization events.


Subject(s)
Apiaceae , Hybridization, Genetic , Apiaceae/genetics , Bayes Theorem , Ecosystem , Metagenomics , Phylogeny
4.
Biology (Basel) ; 11(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-36101408

ABSTRACT

Morchella is a kind of precious edible, medicinal fungi with a series of important effects, including anti-tumor and anti-oxidation effects. Based on the data of 18 environmental variables and the distribution sites of wild Morchella species, this study used a maximum entropy (MaxEnt) model to predict the changes in the geographic distribution of Morchella species in different historical periods (the Last Glacial Maximum (LGM), Mid Holocene (MH), current, 2050s and 2070s). The results revealed that the area under the curve (AUC) values of the receiver operating characteristic curves of different periods were all relatively high (>0.83), indicating that the results of the maximum entropy model are good. Species distribution modeling showed that the major factors influencing the geographical distribution of Morchella species were the precipitation of the driest quarter (Bio17), elevation, the mean temperature of the coldest quarter (Bio11) and the annual mean temperature (Bio1). The simulation of geographic distribution suggested that the current suitable habitat of Morchella was mainly located in Yunnan, Sichuan, Gansu, Shaanxi, Xinjiang Uygur Autonomous Region (XUAR) and other provinces in China. Compared with current times, the suitable area in Northwest and Northeast China decreased in the LGM and MH periods. As for the future periods, the suitable habitats all increased under the different scenarios compared with those in contemporary times, showing a trend of expansion to Northeast and Northwest China. These results could provide a theoretical basis for the protection, rational exploitation and utilization of wild Morchella resources under scenarios of climate change.

5.
Genomics ; 113(4): 2365-2376, 2021 07.
Article in English | MEDLINE | ID: mdl-34051325

ABSTRACT

The forest tree family Aceraceae is widespread in the northern hemisphere and it has ecological and economic importance. However, the phylogenetic relationships and classifications within the family are still controversial due to transitional intraspecific morphological characteristics and introgression hybridization among species. In this study, we determined the evolutionary relationships and molecular evolution of Aceraceae based on plastid phylogenomics and two nuclear gene variations. Phylogenetic analysis based on the plastid genomes suggested that Aceraceae species can be divided into two larger sub-clades corresponding to the two genera Acer and Dipteronia. Conjoint analysis of the plastid and nuclear gene sequences supported the classification with two genera in the family. Molecular dating showed that the two genera diverged 60.2 million years ago, which is generally consistently with previously reported results. Divergence hotspots and positively selected genes identified in the plastid genomes could be useful genetic resources in Aceraceae.


Subject(s)
Aceraceae , Evolution, Molecular , Forests , Phylogeny , Plastids/genetics
6.
Mitochondrial DNA B Resour ; 5(3): 3048-3049, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-33458053

ABSTRACT

Morchella eohespera Beug, Voitk & O'Donnell is a typical black morel species. In this study, using the Nanopore sequencing platform, we characterized its whole mitochondrial (mt) genome sequence. Mt genome of M. eohespera is composed of circular DNA molecules of 243,963 bp, which encoded 102 protein-coding genes (PCGs), two ribosomal RNA genes (rRNA), and 31 transfer RNA (tRNA) genes. The base composition of M. eohespera mitogenome is as follows: A (30.40%), T (29.30%), G (20.8%), and C (19.5%). The phylogenetic analysis suggested that M. eohespera was closely related to the congeneric M. importuna.

7.
Mitochondrial DNA B Resour ; 5(3): 3400-3401, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-33458184

ABSTRACT

Zanthoxylum armatum DC. (Rutaceae) is a shrub and/or tree species with the important medicinal and economic values. In this study, the plastid genome of Z. armatum was characterized by Illumina Hiseq 2500 sequencing platform. In total, the plastid genome is 158,557 bp in length, and comprises a large single copy region of 85,752 bp, a small single copy region of 17,605 bp, and two inverted repeat regions of 27,600 bp. The complete plastid genome contains 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis suggested that Z. armatum and the congeneric Z. simulans clustered into an evolutionary clade with the high support.

8.
Ecol Evol ; 10(24): 14052-14066, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391701

ABSTRACT

Geological and climatic events are considered to profoundly affect the evolution and lineage divergence of plant species. However, the evolutionary histories of tree species that have responded to past geological and climate oscillations in central China's mountainous areas remain mostly unknown. In this study, we assessed the evolutionary history of the endangered and relict tree species Dipteronia sinensis in the Qinling Mountains (QM) and adjacent areas in East Asia based on variations in the complete chloroplast genomes (cpDNA) and reduced-genomic scale single nucleotide polymorphisms (SNPs). Population structure and phylogenetic analysis based on the cpDNA variations suggested that D. sinensis could be divided into two intraspecific genetic lineages in the eastern and western sides of the QM (EQM and WQM, respectively) in East Asia. Molecular dating suggested that the intraspecific divergence of D. sinensis occurred approximately 39.2 million years ago during the later Paleogene. It was significantly correlated with the orogeny of the QM, where the formation of this significant geographic barrier in the region may have led to the divergence of independent lineages. Bayesian clustering and demographic analysis showed that intraspecific gene flow was restricted between the EQM and WQM lineages. Isolation-with-migration analysis indicated that the two genetic lineages experienced significant demographic expansions after the Pleistocene ice ages. However, the genetic admixture was determined in some populations between the two lineages by the large scale of SNP variations due to DNA incompatibility, the large significant population size, and rapid gene flow of nuclear DNA markers. Our results suggest that two different conservation and management units should be constructed for D. sinensis in the EQM and WQM areas. These findings provide novel insights into the unprecedented effects of tectonic changes and climatic oscillations on lineage divergence and plant population evolution in the QM and adjacent areas in East Asia.

9.
Plant Divers ; 41(1): 1-6, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30931411

ABSTRACT

Notopterygium incisum C. C. Ting ex H. T. Chang (Apiaceae) is an endangered perennial herb in China. The lack of transcriptomic and genomic resources for N. incisum greatly hinders studies of its population genetics and conservation. In this study, we employed RNA-seq technology to characterize transcriptomes for the flowers, leaves, and stems of this endangered herb. A total of 56 million clean reads were assembled into 120,716 unigenes with an N50 length of 850 bp. Among these unigenes, 70,245 (58.19%) were successfully annotated and 65,965 (54.64%) were identified as coding sequences based on their similarities with sequences in public databases. We identified 21 unigenes that had significant relationships with cold tolerance in N. incisum according to gene ontology (GO) annotation analysis. In addition, 13,149 simple sequence repeats (SSRs) and 85,681 single nucleotide polymorphisms were detected as potential molecular genetic markers. Ninety-six primer pairs of SSRs were randomly selected to validate their amplification efficiency and polymorphism. Nineteen SSR loci exhibited polymorphism in three natural populations of N. incisum. These results provide valuable resources to facilitate future functional genomics and conservation genetics studies of N. incisum.

10.
Heredity (Edinb) ; 123(2): 242-263, 2019 08.
Article in English | MEDLINE | ID: mdl-30742051

ABSTRACT

Historical geological and climatic events are the most important drivers of population expansions/contractions, range shifts, and interspecific divergence in plants. However, the species divergence and spatiotemporal population dynamics of alpine cold-tolerant herbal plants in the high-altitude Qinghai-Tibetan Plateau (QTP) and adjacent areas remain poorly understood. In this study, we investigated population evolutionary history of four endangered Notopterygium herb species in the QTP and adjacent regions. We sequenced 10 nuclear loci, 2 mitochondrial DNA regions, and 4 chloroplast DNA regions in a total of 72 natural populations from the 4 species, and tested the hypothesis that the population history of these alpine herbs was markedly affected by the Miocene-Pliocene QTP uplifts and Quaternary climatic oscillations. We found that the four Notopterygium species had generally low levels of nucleotide variability within populations. Molecular dating and isolation-with-migration analyses suggested that Notopterygium species diverged ~1.74-7.82 million years ago and their differentiation was significantly associated with recent uplifts of the eastern margin of the QTP. In addition, ecological niche modeling and population history analysis showed that N. incisum and N. franchetii underwent considerable demographic expansions during the last glacial period of the Pleistocene, whereas a demographic contraction and a expansion occurred for N. forrestii and N. oviforme during the antepenultimate interglacial period and penultimate glacial period, respectively. These findings highlight the importance of geological and climatic changes during the Miocene-Pliocene and Pleistocene as causes of species divergence and changes in population structure within cold-tolerant herbs in the QTP biodiversity hotspot.


Subject(s)
Plants, Medicinal/genetics , Plants/genetics , Biodiversity , Biological Evolution , DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , DNA, Plant/genetics , Ecosystem , Genetic Variation/genetics , Species Specificity , Tibet
11.
Mitochondrial DNA B Resour ; 4(2): 2596-2597, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-33365641

ABSTRACT

Gentiana apiata N. E. Brown (Gentianaceae) is a perennial herb plant and only grows in Qinba Mountains in China. Here, we first characterized the complete nucleotide sequence of chloroplast (cp) genome of G. apiata via Illumina next generation sequencing platform. The complete chloroplast genome of G. apiata was 144,274 bp in length, comprising of a large single copy (LSC) region of 77,353 bp, a small single copy (SSC) region of 17,009 bp, and two inverted repeat regions (IRs) of 24,956 bp. The cp genome contains 127 genes, including 82 protein-coding genes, 35 tRNA, eight rRNA genes, and two pseudogenes. Phylogenetic analysis based on 18 cp genome sequences showed that G. apiata closely related to congeneric species.

12.
Mitochondrial DNA B Resour ; 4(2): 4067-4068, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-33366321

ABSTRACT

Anemone taipaiensis W. T. Wang is an endemic herb species in Shaanxi province (China). Here, we first characterized its whole plastid genome via pair-end sequencing method. The whole chloroplast genome was 156,659 bp in size, including a large single-copy (LSC) region of 78,439 bp, a small single-copy (SSC) region of 16,178 bp, and two repeat regions (IRs) of 31,021 bp. A total of 135 genes, including 91 protein-coding genes, 36 tRNA, and 8 rRNA genes were identified in A. taipaiensis. The phylogenetic analysis showed that A. taipaiensis have a close relationship with congeneric species A. trullifolia.

13.
Mitochondrial DNA B Resour ; 5(1): 57-58, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-33366420

ABSTRACT

Forsythia mira M. C. Chang (Oleaceae) is an endemic medicinal shrub in China. In this study, we first characterized its whole plastid genome sequence using the Illumina sequencing platform. The plastid genome was 156,485 bp in length, comprising of a large single copy (LSC) region of 87,223 bp, a small single copy (SSC) region of 17,830 bp, and two inverted repeat regions (IRs) of 51,432 each. The genome of F. mira contained 133 genes, including 86 protein-coding genes, 37 transfer RNAs (tRNA), and 8 ribosomal RNAs (rRNA). The phylogenetic analysis showed that F. mira was placed as a sister to the congeneric F. suspensa.

14.
Int J Mol Sci ; 19(12)2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30558106

ABSTRACT

Plant plastomes play crucial roles in species evolution and phylogenetic reconstruction studies due to being maternally inherited and due to the moderate evolutionary rate of genomes. However, patterns of sequence divergence and molecular evolution of the plastid genomes in the horticulturally- and economically-important Lonicera L. species are poorly understood. In this study, we collected the complete plastomes of seven Lonicera species and determined the various repeat sequence variations and protein sequence evolution by comparative genomic analysis. A total of 498 repeats were identified in plastid genomes, which included tandem (130), dispersed (277), and palindromic (91) types of repeat variations. Simple sequence repeat (SSR) elements analysis indicated the enriched SSRs in seven genomes to be mononucleotides, followed by tetra-nucleotides, dinucleotides, tri-nucleotides, hex-nucleotides, and penta-nucleotides. We identified 18 divergence hotspot regions (rps15, rps16, rps18, rpl23, psaJ, infA, ycf1, trnN-GUU-ndhF, rpoC2-rpoC1, rbcL-psaI, trnI-CAU-ycf2, psbZ-trnG-UCC, trnK-UUU-rps16, infA-rps8, rpl14-rpl16, trnV-GAC-rrn16, trnL-UAA intron, and rps12-clpP) that could be used as the potential molecular genetic markers for the further study of population genetics and phylogenetic evolution of Lonicera species. We found that a large number of repeat sequences were distributed in the divergence hotspots of plastid genomes. Interestingly, 16 genes were determined under positive selection, which included four genes for the subunits of ribosome proteins (rps7, rpl2, rpl16, and rpl22), three genes for the subunits of photosystem proteins (psaJ, psbC, and ycf4), three NADH oxidoreductase genes (ndhB, ndhH, and ndhK), two subunits of ATP genes (atpA and atpB), and four other genes (infA, rbcL, ycf1, and ycf2). Phylogenetic analysis based on the whole plastome demonstrated that the seven Lonicera species form a highly-supported monophyletic clade. The availability of these plastid genomes provides important genetic information for further species identification and biological research on Lonicera.


Subject(s)
Genome, Plastid , High-Throughput Nucleotide Sequencing/methods , Lonicera/genetics , Sequence Analysis, DNA/methods , Evolution, Molecular , Genetic Variation , Genome Size , Microsatellite Repeats , Photosynthesis , Phylogeny , Selection, Genetic
15.
Mitochondrial DNA B Resour ; 3(2): 831-832, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-33474339

ABSTRACT

Euphorbia kansui T.N. Liou ex S.B. Ho (Euphorbiaceae) is a perennial herb plant endemic to China. This species has important economic and medicinal values. In this study, we first characterized the complete nucleotide sequence of chloroplast (cp) genome of E. kansui using the Illumina Hiseq platform. The cp genome was 161,061 bp in length, comprising of a large single copy (LSC) region of 91,288 bp, a small single copy (SSC) region of 17,086 bp, and two inverted repeat regions of 26,343 bp each. The cp genome contains 130 genes, including 86 protein-coding genes, 8 ribosomal RNAs (rRNAs), and 36 transfer RNAs (tRNAs). The phylogenetic analysis indicated that E. kansui was placed as a sister to the congeneric Euphorbia esula.

16.
Mitochondrial DNA B Resour ; 3(2): 1141-1142, 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-33474445

ABSTRACT

Abies chensiensis Van Tiegh. (Pinaceae) is a rare and endangered endemic conifer in China. In this study, using the Illumina sequencing platform, we firstly characterized its whole plastid genome sequence. Our study revealed that A. chensiensis have a typical plastid genome of 121,498 bp in length, comprised of a large single copy region of 76,484 bp, a small single copy region of 42,654 bp and two inverted repeat regions of 1180 bp. A total of 113 genes, 74 protein-coding genes, 35 tRNA, and 4 rRNA genes were identified. The phylogenetic analysis indicated that A. chensiensis was placed as a sister to the congeneric A. sibirica.

17.
Molecules ; 22(7)2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28696392

ABSTRACT

The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation) of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygium franchetii (Notopterygium, Apiaceae) are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq) to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii. In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant-pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR) were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence of N. incisum and N. franchetii were significantly associated with the extremely heterogeneous environments and climatic oscillations in high-altitude areas. This work provides important insights into the molecular mechanisms of adaptation to high-altitudes in alpine herbal plants.


Subject(s)
Apiaceae/metabolism , Transcriptome , Adaptation, Physiological , Apiaceae/genetics , Biological Evolution , China , Gene Expression Profiling , Microsatellite Repeats , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...