Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 16(12): e0260885, 2021.
Article in English | MEDLINE | ID: mdl-34890438

ABSTRACT

BACKGROUND: New-onset heart failure (HF) is associated with poor prognosis and high healthcare utilization. Early identification of patients at increased risk incident-HF may allow for focused allocation of preventative care resources. Health information exchange (HIE) data span the entire spectrum of clinical care, but there are no HIE-based clinical decision support tools for diagnosis of incident-HF. We applied machine-learning methods to model the one-year risk of incident-HF from the Maine statewide-HIE. METHODS AND RESULTS: We included subjects aged ≥ 40 years without prior HF ICD9/10 codes during a three-year period from 2015 to 2018, and incident-HF defined as assignment of two outpatient or one inpatient code in a year. A tree-boosting algorithm was used to model the probability of incident-HF in year two from data collected in year one, and then validated in year three. 5,668 of 521,347 patients (1.09%) developed incident-HF in the validation cohort. In the validation cohort, the model c-statistic was 0.824 and at a clinically predetermined risk threshold, 10% of patients identified by the model developed incident-HF and 29% of all incident-HF cases in the state of Maine were identified. CONCLUSIONS: Utilizing machine learning modeling techniques on passively collected clinical HIE data, we developed and validated an incident-HF prediction tool that performs on par with other models that require proactively collected clinical data. Our algorithm could be integrated into other HIEs to leverage the EMR resources to provide individuals, systems, and payors with a risk stratification tool to allow for targeted resource allocation to reduce incident-HF disease burden on individuals and health care systems.


Subject(s)
Heart Failure/diagnosis , Heart Failure/epidemiology , Aged , Algorithms , Data Mining , Decision Support Systems, Clinical , Early Diagnosis , Female , Health Information Exchange , Humans , Incidence , Maine/epidemiology , Male , Middle Aged , Models, Statistical , Prognosis , Prospective Studies , Supervised Machine Learning
2.
Int J Med Inform ; 137: 104105, 2020 05.
Article in English | MEDLINE | ID: mdl-32193089

ABSTRACT

OBJECTIVE: Predicting the risk of falls in advance can benefit the quality of care and potentially reduce mortality and morbidity in the older population. The aim of this study was to construct and validate an electronic health record-based fall risk predictive tool to identify elders at a higher risk of falls. METHODS: The one-year fall prediction model was developed using the machine-learning-based algorithm, XGBoost, and tested on an independent validation cohort. The data were collected from electronic health records (EHR) of Maine from 2016 to 2018, comprising 265,225 older patients (≥65 years of age). RESULTS: This model attained a validated C-statistic of 0.807, where 50 % of the identified high-risk true positives were confirmed to fall during the first 94 days of next year. The model also captured in advance 58.01 % and 54.93 % of falls that happened within the first 30 and 30-60 days of next year. The identified high-risk patients of fall showed conditions of severe disease comorbidities, an enrichment of fall-increasing cardiovascular and mental medication prescriptions and increased historical clinical utilization, revealing the complexity of the underlying fall etiology. The XGBoost algorithm captured 157 impactful predictors into the final predictive model, where cognitive disorders, abnormalities of gait and balance, Parkinson's disease, fall history and osteoporosis were identified as the top-5 strongest predictors of the future fall event. CONCLUSIONS: By using the EHR data, this risk assessment tool attained an improved discriminative ability and can be immediately deployed in the health system to provide automatic early warnings to older adults with increased fall risk and identify their personalized risk factors to facilitate customized fall interventions.


Subject(s)
Accidental Falls/prevention & control , Algorithms , Electronic Health Records/statistics & numerical data , Machine Learning , Parkinson Disease/physiopathology , Risk Assessment/methods , Aged , Aged, 80 and over , Cohort Studies , Comorbidity , Female , Humans , Maine , Male , Risk Factors
3.
Transl Psychiatry ; 10(1): 72, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080165

ABSTRACT

Suicide is the tenth leading cause of death in the United States (US). An early-warning system (EWS) for suicide attempt could prove valuable for identifying those at risk of suicide attempts, and analyzing the contribution of repeated attempts to the risk of eventual death by suicide. In this study we sought to develop an EWS for high-risk suicide attempt patients through the development of a population-based risk stratification surveillance system. Advanced machine-learning algorithms and deep neural networks were utilized to build models with the data from electronic health records (EHRs). A final risk score was calculated for each individual and calibrated to indicate the probability of a suicide attempt in the following 1-year time period. Risk scores were subjected to individual-level analysis in order to aid in the interpretation of the results for health-care providers managing the at-risk cohorts. The 1-year suicide attempt risk model attained an area under the curve (AUC ROC) of 0.792 and 0.769 in the retrospective and prospective cohorts, respectively. The suicide attempt rate in the "very high risk" category was 60 times greater than the population baseline when tested in the prospective cohorts. Mental health disorders including depression, bipolar disorders and anxiety, along with substance abuse, impulse control disorders, clinical utilization indicators, and socioeconomic determinants were recognized as significant features associated with incident suicide attempt.


Subject(s)
Deep Learning , Suicide, Attempted , Electronic Health Records , Humans , Prospective Studies , Retrospective Studies , Risk Factors , United States
4.
J Med Internet Res ; 21(7): e13719, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278734

ABSTRACT

BACKGROUND: The rapid deterioration observed in the condition of some hospitalized patients can be attributed to either disease progression or imperfect triage and level of care assignment after their admission. An early warning system (EWS) to identify patients at high risk of subsequent intrahospital death can be an effective tool for ensuring patient safety and quality of care and reducing avoidable harm and costs. OBJECTIVE: The aim of this study was to prospectively validate a real-time EWS designed to predict patients at high risk of inpatient mortality during their hospital episodes. METHODS: Data were collected from the system-wide electronic medical record (EMR) of two acute Berkshire Health System hospitals, comprising 54,246 inpatient admissions from January 1, 2015, to September 30, 2017, of which 2.30% (1248/54,246) resulted in intrahospital deaths. Multiple machine learning methods (linear and nonlinear) were explored and compared. The tree-based random forest method was selected to develop the predictive application for the intrahospital mortality assessment. After constructing the model, we prospectively validated the algorithms as a real-time inpatient EWS for mortality. RESULTS: The EWS algorithm scored patients' daily and long-term risk of inpatient mortality probability after admission and stratified them into distinct risk groups. In the prospective validation, the EWS prospectively attained a c-statistic of 0.884, where 99 encounters were captured in the highest risk group, 69% (68/99) of whom died during the episodes. It accurately predicted the possibility of death for the top 13.3% (34/255) of the patients at least 40.8 hours before death. Important clinical utilization features, together with coded diagnoses, vital signs, and laboratory test results were recognized as impactful predictors in the final EWS. CONCLUSIONS: In this study, we prospectively demonstrated the capability of the newly-designed EWS to monitor and alert clinicians about patients at high risk of in-hospital death in real time, thereby providing opportunities for timely interventions. This real-time EWS is able to assist clinical decision making and enable more actionable and effective individualized care for patients' better health outcomes in target medical facilities.


Subject(s)
Computer Systems/standards , Electronic Health Records/standards , Machine Learning/standards , Monitoring, Physiologic/methods , Mortality/trends , Risk Assessment/methods , Algorithms , Female , Humans , Inpatients , Male , Middle Aged , Prospective Studies , Retrospective Studies , Risk Factors
5.
J Med Internet Res ; 21(5): e13260, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31099339

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer death worldwide. Early detection of individuals at risk of lung cancer is critical to reduce the mortality rate. OBJECTIVE: The aim of this study was to develop and validate a prospective risk prediction model to identify patients at risk of new incident lung cancer within the next 1 year in the general population. METHODS: Data from individual patient electronic health records (EHRs) were extracted from the Maine Health Information Exchange network. The study population consisted of patients with at least one EHR between April 1, 2016, and March 31, 2018, who had no history of lung cancer. A retrospective cohort (N=873,598) and a prospective cohort (N=836,659) were formed for model construction and validation. An Extreme Gradient Boosting (XGBoost) algorithm was adopted to build the model. It assigned a score to each individual to quantify the probability of a new incident lung cancer diagnosis from October 1, 2016, to September 31, 2017. The model was trained with the clinical profile in the retrospective cohort from the preceding 6 months and validated with the prospective cohort to predict the risk of incident lung cancer from April 1, 2017, to March 31, 2018. RESULTS: The model had an area under the curve (AUC) of 0.881 (95% CI 0.873-0.889) in the prospective cohort. Two thresholds of 0.0045 and 0.01 were applied to the predictive scores to stratify the population into low-, medium-, and high-risk categories. The incidence of lung cancer in the high-risk category (579/53,922, 1.07%) was 7.7 times higher than that in the overall cohort (1167/836,659, 0.14%). Age, a history of pulmonary diseases and other chronic diseases, medications for mental disorders, and social disparities were found to be associated with new incident lung cancer. CONCLUSIONS: We retrospectively developed and prospectively validated an accurate risk prediction model of new incident lung cancer occurring in the next 1 year. Through statistical learning from the statewide EHR data in the preceding 6 months, our model was able to identify statewide high-risk patients, which will benefit the population health through establishment of preventive interventions or more intensive surveillance.


Subject(s)
Electronic Health Records/trends , Lung Neoplasms/epidemiology , Cohort Studies , Early Detection of Cancer , Female , Humans , Incidence , Maine , Male , Prospective Studies , Retrospective Studies
6.
J Med Internet Res ; 20(6): e10311, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29866643

ABSTRACT

BACKGROUND: For many elderly patients, a disproportionate amount of health care resources and expenditures is spent during the last year of life, despite the discomfort and reduced quality of life associated with many aggressive medical approaches. However, few prognostic tools have focused on predicting all-cause 1-year mortality among elderly patients at a statewide level, an issue that has implications for improving quality of life while distributing scarce resources fairly. OBJECTIVE: Using data from a statewide elderly population (aged ≥65 years), we sought to prospectively validate an algorithm to identify patients at risk for dying in the next year for the purpose of minimizing decision uncertainty, improving quality of life, and reducing futile treatment. METHODS: Analysis was performed using electronic medical records from the Health Information Exchange in the state of Maine, which covered records of nearly 95% of the statewide population. The model was developed from 125,896 patients aged at least 65 years who were discharged from any care facility in the Health Information Exchange network from September 5, 2013, to September 4, 2015. Validation was conducted using 153,199 patients with same inclusion and exclusion criteria from September 5, 2014, to September 4, 2016. Patients were stratified into risk groups. The association between all-cause 1-year mortality and risk factors was screened by chi-squared test and manually reviewed by 2 clinicians. We calculated risk scores for individual patients using a gradient tree-based boost algorithm, which measured the probability of mortality within the next year based on the preceding 1-year clinical profile. RESULTS: The development sample included 125,896 patients (72,572 women, 57.64%; mean 74.2 [SD 7.7] years). The final validation cohort included 153,199 patients (88,177 women, 57.56%; mean 74.3 [SD 7.8] years). The c-statistic for discrimination was 0.96 (95% CI 0.93-0.98) in the development group and 0.91 (95% CI 0.90-0.94) in the validation cohort. The mortality was 0.99% in the low-risk group, 16.75% in the intermediate-risk group, and 72.12% in the high-risk group. A total of 99 independent risk factors (n=99) for mortality were identified (reported as odds ratios; 95% CI). Age was on the top of list (1.41; 1.06-1.48); congestive heart failure (20.90; 15.41-28.08) and different tumor sites were also recognized as driving risk factors, such as cancer of the ovaries (14.42; 2.24-53.04), colon (14.07; 10.08-19.08), and stomach (13.64; 3.26-86.57). Disparities were also found in patients' social determinants like respiratory hazard index (1.24; 0.92-1.40) and unemployment rate (1.18; 0.98-1.24). Among high-risk patients who expired in our dataset, cerebrovascular accident, amputation, and type 1 diabetes were the top 3 diseases in terms of average cost in the last year of life. CONCLUSIONS: Our study prospectively validated an accurate 1-year risk prediction model and stratification for the elderly population (≥65 years) at risk of mortality with statewide electronic medical record datasets. It should be a valuable adjunct for helping patients to make better quality-of-life choices and alerting care givers to target high-risk elderly for appropriate care and discussions, thus cutting back on futile treatment.


Subject(s)
Health Resources/standards , Medical Futility/psychology , Mortality/trends , Quality of Life/psychology , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Prospective Studies , Risk Factors , Time Factors
7.
J Med Internet Res ; 20(1): e22, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382633

ABSTRACT

BACKGROUND: As a high-prevalence health condition, hypertension is clinically costly, difficult to manage, and often leads to severe and life-threatening diseases such as cardiovascular disease (CVD) and stroke. OBJECTIVE: The aim of this study was to develop and validate prospectively a risk prediction model of incident essential hypertension within the following year. METHODS: Data from individual patient electronic health records (EHRs) were extracted from the Maine Health Information Exchange network. Retrospective (N=823,627, calendar year 2013) and prospective (N=680,810, calendar year 2014) cohorts were formed. A machine learning algorithm, XGBoost, was adopted in the process of feature selection and model building. It generated an ensemble of classification trees and assigned a final predictive risk score to each individual. RESULTS: The 1-year incident hypertension risk model attained areas under the curve (AUCs) of 0.917 and 0.870 in the retrospective and prospective cohorts, respectively. Risk scores were calculated and stratified into five risk categories, with 4526 out of 381,544 patients (1.19%) in the lowest risk category (score 0-0.05) and 21,050 out of 41,329 patients (50.93%) in the highest risk category (score 0.4-1) receiving a diagnosis of incident hypertension in the following 1 year. Type 2 diabetes, lipid disorders, CVDs, mental illness, clinical utilization indicators, and socioeconomic determinants were recognized as driving or associated features of incident essential hypertension. The very high risk population mainly comprised elderly (age>50 years) individuals with multiple chronic conditions, especially those receiving medications for mental disorders. Disparities were also found in social determinants, including some community-level factors associated with higher risk and others that were protective against hypertension. CONCLUSIONS: With statewide EHR datasets, our study prospectively validated an accurate 1-year risk prediction model for incident essential hypertension. Our real-time predictive analytic model has been deployed in the state of Maine, providing implications in interventions for hypertension and related diseases and hopefully enhancing hypertension care.


Subject(s)
Electronic Health Records/standards , Hypertension/diagnosis , Machine Learning/standards , Aged , Cohort Studies , Female , Humans , Hypertension/pathology , Male , Middle Aged , Prospective Studies , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...