Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Sci Med Footb ; : 1-7, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120555

ABSTRACT

The aim of this study is to determine the incidence and characteristics of football player injuries and illnesses during the 14th National Student Games of China. The results indicate that 32 illnesses were reported, with 17 (53%) involving the gastrointestinal system, primarily caused by environmental factors (24, 69%). The illness incidence rate was 4.3 cases per 100 players or 10.2 cases per 1,000 player-days. Regarding injuries, 122 cases were reported, yielding an overall injury incidence rate was 38.9 per 1,000 game hours, or 1.14 per game. Most injuries resulted from collisions with other players, occurring predominantly 15 minutes before the end of the first half, and 30 minutes before the end of the game. Most of the injuries were in the ankle, thigh, knee joint, and groin. In conclusion, the injury incidence of football players in the 14th National Student Games of China is high, occurring from a variety of mechanisms. Physical contact should be emphasized during training, core strength, and stability training should be enhanced alongside comprehensive injury management and prevention strategies.

2.
Theor Appl Genet ; 137(9): 203, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134836

ABSTRACT

The common wheat line 4N0461 showed adult-plant resistance to leaf rust. 4N0461 was crossed with susceptible cultivars Nongda4503 and Shi4185 to map the causal resistance gene(s). Segregation of leaf rust response in F2 populations from both crosses was 9 resistant:7 susceptible, indicative of two complementary dominant resistance genes. The genes were located on chromosome arms 3BS and 4BL and temporarily named LrN3B and LrN4B, respectively. Subpopulations from 4N0461 × Nongda4503 with LrN3B segregating as a single allele were used to fine-map LrN3B locus. LrN3B was delineated in a genetic interval of 0.07 cM, corresponding to 106 kb based on the Chinese Spring reference genome (IWGSC RefSeq v1.1). Four genes were annotated in this region, among which TraesCS3B02G014800 and TraesCS3B02G014900 differed between resistant and susceptible genotypes, and both were required for LrN3B resistance in virus-induced gene silencing experiments. Diagnostic markers developed for checking the polymorphism of each candidate gene, can be used for marker-assisted selection in wheat breeding programs.


Subject(s)
Basidiomycota , Chromosome Mapping , Chromosomes, Plant , Disease Resistance , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Chromosomes, Plant/genetics , Genetic Markers , Genotype , Alleles
3.
Water Sci Technol ; 90(3): 894-907, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141040

ABSTRACT

This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.


Subject(s)
Charcoal , Methane , Charcoal/chemistry , Anaerobiosis , Methane/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Food , Garbage , Microbiota , Bioreactors , Food Loss and Waste
4.
Mitochondrion ; 78: 101932, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986922

ABSTRACT

SIRT6, an evolutionarily conserved histone deacetylase, has been identified as a novel direct downstream target of Akt/FoxO3a and a tumor suppressor in colon cancer in our previous research. Nevertheless, the precise mechanisms through which SIRT6 hinders tumor development remain unclear. To ascertain whether SIRT6 directly impacts Survivin transcription, a ChIP assay was conducted using an anti-SIRT6 antibody to isolate DNA. YM155 was synthesized to explore Survivin's role in mitochondrial apoptosis, autophagy and tumor progression. Our investigation into the regulation of Survivin involved real-time fluorescence imaging in living cells, real-time PCR, immunohistochemistry, flow cytometry, and xenograft mouse assays. In this current study, we delved into the role of SIRT6 in colon cancer and established that activated SIRT6 triggers mitochondrial apoptosis by reducing Survivin expression. Subsequent examinations revealed that SIRT6 directly binds to the Survivin promoter, impeding its transcription. Notably, direct inhibition of Survivin significantly impeded colon cancer proliferation by inducing mitochondrial apoptosis and autophagy both in vitro and in vivo. More interestingly, Survivin inhibition reactivated the Akt/FoxO3a pathway and elevated SIRT6 levels, establishing a positive feedback loop. Our results identify Survivin as a novel downstream transcriptional target of SIRT6 that fosters tumor growth and holds promise as a prospective target for colon cancer therapy.

5.
Medicine (Baltimore) ; 103(30): e39069, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058823

ABSTRACT

Infertility can lead to significant psychological distress among women, yet the roles of hope and resilience in mitigating depressive symptoms remain inadequately explored, particularly within the Chinese context. We performed a cross-sectional observational study to investigate the psychological impacts of infertility among Chinese women as well as to discern whether hope and resilience can influence their depressive symptoms. We recruited 364 Chinese women seeking infertility treatment in the Shandong region. Participants completed validated assessments including the Hospital Anxiety and Depression Scale, Connor-Davidson Resilience Scale, and Herth Hope Index. Demographic and clinical data were also collected. We observed elevated levels of depressive symptoms and anxiety among women with infertility. Particularly, demographic factors such as an older age, rural residence, lower income, lower education, adverse life events, and longer infertility duration were associated with increased depressive symptoms. Individuals who experienced adverse life events were at a 2.42-fold increased risk of developing depressive symptoms (P = .04). Depressive symptoms were inversely correlated with both hope levels (r = -0.25; P < .05) and resilience levels (r = -0.32; P < .05). Hope levels were positively correlated with resilience (R = 0.67; P < .05). After controlling for the interaction of hope and resilience, we found that only depressive symptoms and resilience were negatively correlated. The psychological burden of infertility among Chinese women is widespread and affects many individuals from different demographic backgrounds. Interventions aimed at increasing resilience may be helpful to mitigate depressive symptoms.


Subject(s)
Adaptation, Psychological , Depression , Resilience, Psychological , Humans , Female , Cross-Sectional Studies , Adult , Depression/psychology , Depression/epidemiology , China/epidemiology , Infertility, Female/psychology , Hope , Coping Skills
6.
Heliyon ; 10(13): e33601, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040275

ABSTRACT

Background: Diabetic cardiomyopathy (DC), a frequent complication of type 2 diabetes mellitus (T2DM), is mainly associated with severe adverse outcomes. Previous research has highlighted the role of Lysophosphatidylcholine (LPC) in inducing myocardial injury; however, the specific mechanisms through which LPC mediate such injury in DC remain elusive. The existing knowledge gap underscores the need for additional clarification. Consequently, this study aimed to explore the impact and underlying mechanisms of LPC on myocardial injury in DC. Methods: A total of 55 patients diagnosed with T2DM and 62 healthy controls were involved. A combination of 16s rRNA sequencing, metabolomic analysis, transcriptomic RNA-sequencing (RNA-seq), and whole exome sequencing (WES) was performed on fecal and peripheral blood samples collected from the participants. Following this, correlation analysis was carried out, and the results were further validated through the mouse model of T2DM. Results: Four LPC variants distinguishing T2DM patients from healthy controls were identified, all of which were upregulated in T2DM patients. Specifically, Lysopc (16:0, 2 N isoform) and LPC (16:0) exhibited a positive correlation with nuclear factor kappa B subunit 2 (NFKB2) and a negative correlation with Zinc finger protein 480 (ZNF480) Furthermore, the expression levels of Toll-like receptor 4 (TLR4), c-Jun, c-Fos, and NFKB2 were upregulated in the peripheral blood of T2DM patients and in the myocardial tissue of T2DM mice, whereas ZNF480 expression level was downregulated. Lastly, myocardial injury was identified in T2DM mice. Conclusions: The results indicated that LPC could induce myocardial injury in DC through the TLR4/ZNF480/AP-1/NF-kB pathway, providing a precise target for the clinical diagnosis and treatment of DC.

7.
Clin Transl Med ; 14(7): e1777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039912

ABSTRACT

N-methyladenosine (m6A) represents a prevalent RNA modification observed in colorectal cancer. Despite its abundance, the biological implications of m6A methylation on the lncRNA CARMN remain elusive in colorectal cancer, especially for mutant p53 gain-of-function. Here, we elucidate that CARMN exhibits diminished expression levels in colorectal cancer patients with mutant p53, attributed to its rich m6A methylation, which promotes cancer proliferation, invasion and metastasis in vitro and in vivo. Further investigation illustrates that ALKBH5 acts as a direct demethylase of CARMN, targeting 477 methylation sites, thereby preserving CARMN expression. However, the interaction of mutant p53 with the ALKBH5 promoter impedes its transcription, enhancing m6A methylation levels on CARMN. Subsequently, YTHDF2/YTHDF3 recognise and degrade m6A-modified CARMN. Concurrently, overexpressing CARMN significantly suppressed colorectal cancer progression in vitro and in vivo. Additionally, miR-5683 was identified as a direct downstream target of lncRNA CARMN, exerting an antitumour effect by cooperatively downregulating FGF2 expression. Our findings revealed the regulator and functional mechanism of CARMN in colorectal cancer with mutant p53, potentially offering insights into demethylation-based strategies for cancer diagnosis and therapy. The m6A methylation of CARMN that is prime for mutant p53 gain-of-function-induced malignant progression of colorectal cancer, identifying a promising approach for cancer therapy.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Tumor Suppressor Protein p53 , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Disease Progression , Demethylation , Cell Line, Tumor , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic
8.
J Transl Med ; 22(1): 457, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745204

ABSTRACT

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Subject(s)
Arthritis, Rheumatoid , Fibrosis , Inflammation , Lung Diseases, Interstitial , Potassium Channels , Proto-Oncogene Proteins c-akt , Resveratrol , Signal Transduction , Animals , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Autophagy/drug effects , Cell Line , Inflammation/pathology , Inflammation/drug therapy , Lung/pathology , Lung/drug effects , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Membrane Proteins/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Mice , Potassium Channels/drug effects , Potassium Channels/metabolism
9.
Mol Cancer Ther ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781104

ABSTRACT

Inhibitors of DNA-PK sensitize cancers to radiotherapy and DNA-damaging chemotherapies, with candidates in clinical trials. However, the degree to which DNA-PK inhibitors also sensitize normal tissues remains poorly characterized. In this study we compare tumor growth control and normal tissue sensitization following DNA-PK inhibitors in combination with radiation and etoposide. FaDu tumor xenografts implanted in mice were treated with 10 - 15Gy irradiation ± 3 - 100 mg/kg AZD7648. A dose-dependent increase in time to tumor volume doubling following AZD7648 was proportional to an increase in toxicity scores of the overlying skin. Similar effects were seen in the intestinal jejunum, tongue and FaDu tumor xenografts of mice assessed for proliferation rates at 3.5 days after treatment with etoposide or 5Gy whole body irradiation ± DNA-PK inhibitors AZD7648 or peposertib (M3814). Additional organs were examined for sensitivity to DNA-PK inhibitor activity in ATM-deficient mice, where DNA-PK activity is indicated by surrogate marker γH2AX. Inhibition was observed in heart, brain, pancreas, thymus, tongue and salivary glands of ATM-deficient mice treated with the DNA-PK inhibitors relative to radiation alone. Similar reductions are also seen in ATM-deficient FaDu tumor xenografts where both pDNA-PK and γH2AX staining could be performed. Conclusions: DNA-PK inhibitor-mediated sensitization to radiation and DNA-damaging chemotherapy is not limited to tumor tissues, but also extends to normal tissues sustaining DNA damage. These data are useful for interpretation of the sensitizing effects of DNA damage repair inhibitors, where a therapeutic index showing greater cell-killing effects on cancer cells is crucial for optimal clinical translation.

10.
DNA Repair (Amst) ; 139: 103689, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749239

ABSTRACT

The effectiveness of radiotherapy depends on the sensitivities of 'normal' and cancer cells to the administered radiation dose. Increasing the radiosensitivity of cancers by inhibiting DNA damage repair is a goal of much current research, however success depends on avoiding concomitant sensitization of normal tissues inevitably irradiated during therapy. In this study we investigated the mechanisms of radiosensitization for DNA-PK and PARP inhibitors by examining the impacts on proliferating vs quiescent cell populations. Experiments were performed in BRCA1/2null and wild-type parental cancer models in vitro and in vivo. Overall AZD7648 has greater radiosensitizing activity relative to Olaparib, with BRCA2-deficient models showing the greatest sensitivity. However, DNA-PK inhibitor AZD7648 also produced greater toxicity in all irradiated mice. While both DNA-PK and PARP inhibition sensitizes wild type tumor cells to radiation, in BRCA1/2 deficient cells PARP inhibition by Olaparib had limited radiosensitization capacity. Quiescent cells are more radioresistant than proliferating cells, and these were also effectively sensitized by AZD7648 while Olaparib was unable to increase radiation-induced cell kill, even in BRCA1/2null cells. These findings underscore the distinct mechanisms of radiosensitization for DNA-PK and PARP inhibitors. While DNA-PK inhibitors are able to target both proliferating and non-proliferating tumor cells for greater overall anti-cancer benefit, their application is limited by exacerbation of normal tissue toxicities. Conversely, PARP inhibitors exhibit selective activity for proliferating cells, providing a mechanism for targeting activity to cancers, but due to poor activity in non-proliferating cells they have an overall reduced impact on tumor growth control. This study highlights the importance of creating a therapeutic ratio with DNA damage repair inhibition radiation sensitizing strategies.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA-Activated Protein Kinase , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Radiation-Sensitizing Agents , Phthalazines/pharmacology , Piperazines/pharmacology , Radiation-Sensitizing Agents/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Humans , BRCA1 Protein/metabolism , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Mice , Cell Line, Tumor , Female , BRCA2 Protein/genetics , Cell Proliferation/drug effects , Radiation Tolerance/drug effects , Xenograft Model Antitumor Assays
11.
Mikrochim Acta ; 191(6): 341, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38795199

ABSTRACT

The construction of gating system in artificial channels is a cutting-edge research direction in understanding biological process and application sensing. Here, by mimicking the gating system, we report a device that easily synthesized single-glass micropipettes functionalized by three-dimensional (3D) DNA network, which triggers the gating mechanism for the detection of biomolecules. Based on this strategy, the gating mechanism shows that single-glass micropipette assembled 3D DNA network is in the "OFF" state, and after collapsing in the presence of ATP, they are in the "ON" state, at which point they exhibit asymmetric response times. In the "ON" process of the gating mechanism, the ascorbic acid phosphate (AAP) can be encapsulated by a 3D DNA network and released in the presence of adenosine triphosphate (ATP), which initiates a catalyzed cascade reaction under the influence of alkaline phosphatase (ALP). Ultimately, the detection of ALP can be responded to form the fluorescence signal generated by terephthalic acid that has captured hydroxyl radicals, which has a detection range of 0-250 mU/mL and a limit of detection of 50 mU/mL. This work provides a brand-new way and application direction for research of gating mechanism.


Subject(s)
Adenosine Triphosphate , Alkaline Phosphatase , DNA , Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , DNA/chemistry , Glass/chemistry , Biosensing Techniques/methods , Limit of Detection , Ascorbic Acid/chemistry , Ascorbic Acid/analogs & derivatives
12.
ACS Appl Mater Interfaces ; 16(20): 26634-26642, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722947

ABSTRACT

Achieving selective transport of monovalent metal ions with high precision and permeability analogues to biological protein ion channels has long been explored for fundamental research and various applications, such as ion sieving, mineral extraction, and energy harvesting and conversion. However, it still remains a significant challenge to construct artificial nanofluidic devices to realize the trade-off effects between selective ion transportation and high ion permeability. In this work, we report a bioinspired functional micropipet with in situ growth of crown ether-encapsulated metal-organic frameworks (MOFs) inside the tip and realize selective transport of monovalent metal ions. The functional ion-selective micropipet with sub-nanochannels was constructed by the interfacial growth method with the formation of composite MOFs consisting of ZIF-8 and 15-crown-5. The resulting micropipet device exhibited obvious monovalent ion selectivity and high flux of Li+ due to the synergistic effects of size sieving in subnanoconfined space and specific coordination of 15-crown-5 toward Na+. The selectivity of Li+/Na+, Li+/K+, Li+/Ca2+, and Li+/Mg2+ with 15-crown-5@ZIF-8-functionalized micropipet reached 3.9, 5.2, 105.8, and 122.4, respectively, which had an obvious enhancement compared to that with ZIF-8. Notably, the ion flux of Li+ can reach up to 93.8 ± 3.6 mol h-1·m-2 that is much higher than previously reported values. Furthermore, the functional micropipet with 15-crown-5@ZIF-8 sub-nanochannels exhibited stable Li+ selectivity under various conditions, such as different ion concentrations, pH values, and mixed ion solutions. This work not only provides new opportunities for the development of MOF-based nanofluidic devices for selective ion transport but also facilitates the promising practical applications in lithium extraction from salt-like brines, sewage treatment, and other related aspects.

13.
ACS Appl Mater Interfaces ; 16(20): 26817-26823, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727564

ABSTRACT

Emulating biological sodium ion channels to achieve high selectivity and rapid Na+ transport is important for water desalination, energy conversion, and separation processes. However, the development of artificial ion channels, especially multichannels, to achieve high ion selectivity, remains a challenge. In this work, we demonstrate the fabrication of ion channel membranes utilizing crown-ether crystals (DA18C6-nitrate crystals), which feature extremely consistent subnanometer pores. The polyethylene terephthalate (PET) membranes were initially subjected to amination, followed by the in situ growth of DA18C6-nitrate crystals to establish ordered multichannels aimed at facilitating selective Na+ conductance. These channels allow rapid Na+ transport while inhibiting the migration of other ions (K+ and Ca2+). The Na+ transport rate was 2.15 mol m-2 h-1, resulting in the Na+/K+ and Na+/Ca2+ selectivity ratios of 6.53 and 12.56, respectively. Due to the immobilization of the crown-ether ring, when the size of the transmembrane ion exceeded that of the crown-ether ring's cavity, the ions had to undergo a dehydration process to pass through the channel. This resulted in the ions encountering a higher energy barrier upon entering the channel, making it more difficult for them to permeate. However, the size of Na+ was compatible with the cavity of the crown-ether ring and was able to displace the hydrated layer effectively, facilitating selective Na+ translocation. In summary, this research offers a promising approach for the future development of functionalized ion channels and efficient membrane materials tailored for high-performance Na+ separation.

14.
Anal Chem ; 96(19): 7470-7478, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38696229

ABSTRACT

MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.


Subject(s)
Glass , MicroRNAs , Nanowires , Peptide Nucleic Acids , Silicon Dioxide , MicroRNAs/analysis , Peptide Nucleic Acids/chemistry , Silicon Dioxide/chemistry , Humans , Nanowires/chemistry , Glass/chemistry , Biosensing Techniques/methods , Limit of Detection
15.
ACS Omega ; 9(12): 14210-14216, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559911

ABSTRACT

In the background of the strong oil wettability and low production by water flooding in carbonate reservoirs, low-salinity water containing sulfate ions can significantly change the surface wettability of carbonate rocks and thus increase the sweeping area; however, the absorption and desorption mechanisms of the oil film in the carbonate rock surface remain unclear. This paper analyzed the wettability alternation of carbonate rocks' surface in pure water and sodium sulfate solution. At the same time, MD (Materials Studio) software was used to simulate the formation process of the oil film and the effect of sulfate ions on the desorption of the oil film on the surface of carbonate rocks. The experimental results showed that sodium sulfate solution could accelerate the rate from oil-wet to water-wet and the final contact angle (49°) was smaller than that in pure water. The simulation results showed that dodecane molecules moved to the surface of calcite to form a double layer of the oil film and that the oil film near the calcite surface had a high-density stable structure under the van der Waals and electrostatic action. The hydrating sulfate ions above the oil film broke through the double oil film to form a water channel mainly under the action of electrostatic force and a hydrogen bond and then adsorbed on the calcite surface. A large number of water molecules moved down the water channel based on a strong hydrogen bonding force and crowded out the oil molecules on the surface of the calcite, resulting in the oil film detachment. This work aims to explain the interaction of oil molecules, water molecules, and SO42- ions at the molecular scale and guide the practical application of low-salinity water flooding in carbonate reservoirs.

16.
Schizophrenia (Heidelb) ; 10(1): 47, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627438

ABSTRACT

Clozapine-resistant treatment-refractory schizophrenia (CR-TRS) patients face significant clinical challenges. While links between metabolic syndrome (MetS) and inflammatory cytokines in schizophrenia have been established, the relationship between MetS and cytokine levels in CR-TRS patients remains unexplored. This study aimed to investigate the relationship between cytokines levels, clinical symptoms and cognitive impairments in CR-TRS patients, both with and without MetS. The study included 69 CR-TRS patients (31with MetS and 38 without MetS) and 84 healthy controls. The levels of IL-2, IL-6, TNF-α and routine biochemical parameters were measured. Psychopathological symptoms and cognitive function were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), respectively. We found that CR-TRS patients with MetS displayed lower cognitive function scores compared to those without MetS, even when accounting for potential confounders. TNF-α levels were significantly higher in CRTRS patients with MetS compared to those without MetS, demonstrating substantial pathophysiological potential for CR-TRS patients with MetS via receiver operating characteristic curve (ROC). In CR-TRS patients without MetS, IL-2 independently contributed to the total score and general psychopathology subscore of PANSS. Additionally, IL-6 exhibited an independent contribution to the positive subscore of PANSS. In terms of cognition function, IL-6 independently contributed to the delayed memory of RBANS in CR-TRS patients without MetS. TNF-α could potentially serve as a predictive marker for distinguishing between CR-TRS patients with/without MetS, while IL-2 and IL-6 could independently contribute to psychopathological symptoms or cognitive function in CRTRS patients without MetS. Our study provided insights into the potential interplay between cytokines, clinical symptoms and cognitive impairments in CR-TRS patients with/without MetS.

17.
Angew Chem Int Ed Engl ; 63(25): e202405863, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38589298

ABSTRACT

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

18.
Pestic Biochem Physiol ; 201: 105899, 2024 May.
Article in English | MEDLINE | ID: mdl-38685208

ABSTRACT

This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.


Subject(s)
Aedes , Insect Proteins , Ivermectin , Animals , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Ivermectin/pharmacology , Insect Proteins/metabolism , Insect Proteins/genetics , Trypsin/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Fertility/drug effects , Insecticide Resistance/genetics , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology , Molecular Docking Simulation , Insecticides/pharmacology
19.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 986-996, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655616

ABSTRACT

Vaccines play essential roles in the fight against the COVID-19 pandemic. The development and assessment of COVID-19 vaccines have generally focused on the induction and boosting of neutralizing antibodies targeting the SARS-CoV-2 spike (S) protein. Due to rapid and continuous variation in the S protein, such vaccines need to be regularly updated to match newly emerged dominant variants. T-cell vaccines that target MHC I- or II-restricted epitopes in both structural and non-structural viral proteins have the potential to induce broadly cross-protective and long-lasting responses. In this work, the entire proteome encoded by SARS-CoV-2 (Wuhan-hu-1) is subjected to immunoinformatics-based prediction of HLA-A*02:01-restricted epitopes. The immunogenicity of the predicted epitopes is evaluated using peripheral blood mononuclear cells from convalescent Wuhan-hu-1-infected patients. Furthermore, predicted epitopes that are conserved across major SARS-CoV-2 lineages and variants are used to construct DNA vaccines expressing multi-epitope polypeptides. Most importantly, two DNA vaccine constructs induce epitope-specific CD8 + T-cell responses in a mouse model of HLA-A*02:01 restriction and protect immunized mice from challenge with Wuhan-hu-1 virus after hACE2 transduction. These data provide candidate T-cell epitopes useful for the development of T-cell vaccines against SARS-CoV-2 and demonstrate a strategy for quick T-cell vaccine candidate development applicable to other emerging pathogens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Computational Biology , Epitopes, T-Lymphocyte , HLA-A2 Antigen , SARS-CoV-2 , Vaccines, DNA , Epitopes, T-Lymphocyte/immunology , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Mice , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , Mice, Inbred BALB C , Immunoinformatics
20.
ACS Sens ; 9(4): 2050-2056, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38632929

ABSTRACT

DNA carries genetic information and can serve as an important biomarker for the early diagnosis and assessment of the disease prognosis. Here, we propose a bottom-up assembly method for a silica nanowire-filled glass microporous (SiNWs@GMP) sensor and develop a universal sensing platform for the ultrasensitive and specific detection of DNA. The three-dimensional network structure formed by SiNWs provides them with highly abundant and accessible binding sites, allowing for the immobilization of a large amount of capture probe DNA, thereby enabling more target DNA to hybridize with the capture probe DNA to improve detection performance. Therefore, the SiNWs@GMP sensor achieves ultrasensitive detection of target DNA. In the detection range of 1 aM to 100 fM, there is a good linear relationship between the decrease rate of current signal and the concentration of target DNA, and the detection limit is as low as 1 aM. The developed SiNWs@GMP sensor can distinguish target DNA sequences that are 1-, 3-, and 5-mismatched, and specifically recognize target DNA from complex mixed solution. Furthermore, based on this excellent selectivity and specificity, we validate the universality of this sensing strategy by detecting DNA (H1N1 and H5N1) sequences associated with the avian influenza virus. By replacing the types of nucleic acid aptamers, it is expected to achieve a wide range and low detection limit sensitive detection of various biological molecules. The results indicate that the developed universal sensing platform has ultrahigh sensitivity, excellent selectivity, stability, and acceptable reproducibility, demonstrating its potential application in DNA bioanalysis.


Subject(s)
Biosensing Techniques , Glass , Limit of Detection , Nanowires , Silicon Dioxide , Glass/chemistry , Silicon Dioxide/chemistry , Nanowires/chemistry , Biosensing Techniques/methods , DNA/chemistry , Porosity , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H1N1 Subtype/isolation & purification , DNA, Viral/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL