Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Discov ; 9(1): 55, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308475

ABSTRACT

Understanding tumor heterogeneity and immune infiltrates within the tumor-immune microenvironment (TIME) is essential for the innovation of immunotherapies. Here, combining single-cell transcriptomics and chromatin accessibility sequencing, we profile the intratumor heterogeneity of malignant cells and immune properties of the TIME in primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) patients. We demonstrate diverse malignant programs related to tumor-promoting pathways, cell cycle and B-cell immune response. By integrating data from independent systemic DLBCL and follicular lymphoma cohorts, we reveal a prosurvival program with aberrantly elevated RNA splicing activity that is uniquely associated with PCNS DLBCL. Moreover, a plasmablast-like program that recurs across PCNS/activated B-cell DLBCL predicts a worse prognosis. In addition, clonally expanded CD8 T cells in PCNS DLBCL undergo a transition from a pre-exhaustion-like state to exhaustion, and exhibit higher exhaustion signature scores than systemic DLBCL. Thus, our study sheds light on potential reasons for the poor prognosis of PCNS DLBCL patients, which will facilitate the development of targeted therapy.

2.
Clin Epigenetics ; 15(1): 92, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237385

ABSTRACT

BACKGROUND: Epigenetic dysregulation is essential to the tumorigenesis of oral squamous cell carcinoma (OSCC). SET and MYND domain-containing protein 3 (SMYD3), a histone lysine methyltransferase, is implicated in gene transcription regulation and tumor development. However, the roles of SMYD3 in OSCC initiation are not fully understood. The present study investigated the biological functions and mechanisms involved in the SMYD3-mediated tumorigenesis of OSCC utilizing bioinformatic approaches and validation assays with the aim of informing the development of targeted therapies for OSCC. RESULTS: 429 chromatin regulators were screened by a machine learning approach and aberrant expression of SMYD3 was found to be closely associated with OSCC formation and poor prognosis. Data profiling of single-cell and tissue demonstrated that upregulated SMYD3 significantly correlated with aggressive clinicopathological features of OSCC. Alterations in copy number and DNA methylation patterns may contribute to SMYD3 overexpression. Functional experimental results suggested that SMYD3 enhanced cancer cell stemness and proliferation in vitro and tumor growth in vivo. SMYD3 was observed to bind to the High Mobility Group AT-Hook 2 (HMGA2) promoter and elevated tri-methylation of histone H3 lysine 4 at the corresponding site was responsible for transactivating HMGA2. SMYD3 also was positively linked to HMGA2 expression in OSCC samples. Furthermore, treatment with the SMYD3 chemical inhibitor BCI-121 exerted anti-tumor effects. CONCLUSIONS: Histone methyltransferase activity and transcription-potentiating function of SMYD3 were found to be essential for tumorigenesis and the SMYD3-HMGA2 is a potential therapeutic target in OSCC.


Subject(s)
Histone-Lysine N-Methyltransferase , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
3.
Sci Adv ; 9(4): eadd2175, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36696508

ABSTRACT

Although mitotic chromosomes are highly compacted and transcriptionally inert, some active chromatin features are retained during mitosis to ensure the proper postmitotic reestablishment of maternal transcriptional programs, a phenomenon termed "mitotic bookmarking." However, the dynamics and regulation of mitotic bookmarking have not been systemically surveyed. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we examined 6538 mitotic L02 human liver cells of variable stages and found that chromatin accessibility remained changing throughout cell division, with a constant decrease until metaphase and a gradual increase as chromosomes segregated. In particular, a subset of chromatin regions were identified to remain open throughout mitosis, and genes associated with these bookmarked regions are primarily linked to rapid reactivation upon mitotic exit. We also demonstrated that nuclear transcription factor Y subunit α (NF-YA) preferentially occupied bookmarked regions and contributed to transcriptional reactivation after mitosis. Our study uncovers the dynamic and regulatory blueprint of mitotic bookmarking.


Subject(s)
Chromatin , Chromosomes , Humans , Chromatin/genetics , Transcription Factors/genetics , Mitosis/genetics
4.
Database (Oxford) ; 20222022 06 27.
Article in English | MEDLINE | ID: mdl-35758882

ABSTRACT

With the rapid development of next-generation sequencing technology, many laboratories have produced a large amount of single-cell transcriptome data of blood and tissue samples from patients with autoimmune diseases, which enables in-depth studies of the relationship between gene transcription and autoimmune diseases. However, there is still a lack of a database that integrates the large amount of autoimmune disease transcriptome sequencing data and conducts effective analysis. In this study, we developed a user-friendly web database tool, Interactive Analysis and Atlas for Autoimmune disease (IAAA), which integrates bulk RNA-seq data of 929 samples of 10 autoimmune diseases and single-cell RNA-seq data of 783 203 cells in 96 samples of 6 autoimmune diseases. IAAA also provides customizable analysis modules, including gene expression, difference, correlation, similar gene detection and cell-cell interaction, and can display results in three formats (plot, table and pdf) through custom parameters. IAAA provides valuable data resources for researchers studying autoimmune diseases and helps users deeply explore the potential value of the current transcriptome data. IAAA is available. Database URL: http://galaxy.ustc.edu.cn/IAAA.


Subject(s)
Autoimmune Diseases , Transcriptome , Autoimmune Diseases/genetics , Databases, Factual , High-Throughput Nucleotide Sequencing , Humans , RNA-Seq , Sequence Analysis, RNA , Software , Transcriptome/genetics
6.
Cell Rep ; 37(1): 109793, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34587478

ABSTRACT

The mortality risk of coronavirus disease 2019 (COVID-19) patients has been linked to the cytokine storm caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the inflammatory responses shared between COVID-19 and other infectious diseases that feature cytokine storms may therefore help in developing improved therapeutic strategies. Here, we use integrative analysis of single-cell transcriptomes to characterize the inflammatory signatures of peripheral blood mononuclear cells from patients with COVID-19, sepsis, and HIV infection. We identify ten hyperinflammatory cell subtypes in which monocytes are the main contributors to the transcriptional differences in these infections. Monocytes from COVID-19 patients share hyperinflammatory signatures with HIV infection and immunosuppressive signatures with sepsis. Finally, we construct a "three-stage" model of heterogeneity among COVID-19 patients, related to the hyperinflammatory and immunosuppressive signatures in monocytes. Our study thus reveals cellular and molecular insights about inflammatory responses to SARS-CoV-2 infection and provides therapeutic guidance to improve treatments for subsets of COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/immunology , HIV Infections/blood , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/immunology , Sepsis/blood , Transcriptome , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokines/blood , Data Analysis , Datasets as Topic , HIV Infections/immunology , HIV-1/immunology , Humans , Immunosuppression Therapy , Inflammation/blood , Leukocytes, Mononuclear/immunology , Sepsis/immunology , Single-Cell Analysis
7.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33834202

ABSTRACT

The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.


Subject(s)
Algorithms , Computational Biology/methods , Gene Expression Profiling/methods , RNA-Seq/methods , Single-Cell Analysis/methods , COVID-19/blood , COVID-19/genetics , COVID-19/virology , Cluster Analysis , Computer Simulation , Genomics/methods , Humans , Leukocytes, Mononuclear/classification , Leukocytes, Mononuclear/metabolism , Reproducibility of Results , SARS-CoV-2/physiology , Severity of Illness Index
8.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33657410

ABSTRACT

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Subject(s)
COVID-19/immunology , Megakaryocytes/immunology , Monocytes/immunology , RNA, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Cohort Studies , Cytokines/metabolism , Female , Humans , Male , Middle Aged , RNA, Viral/blood , RNA, Viral/isolation & purification , Single-Cell Analysis , Transcriptome/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...