Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
1.
ACS Earth Space Chem ; 8(5): 1048-1061, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38774356

ABSTRACT

Global efforts to build a net-zero economy and the irreplaceable roles of rare-earth elements (REEs) in low-carbon technologies urge the understanding of REE occurrence in natural deposits, discovery of alternative REE resources, and development of green extraction technologies. Advancement in these directions requires comprehensive knowledge on geochemical behaviors of REEs in the presence of naturally prevalent organic ligands, yet much remains unknown about organic ligand-mediated REE mobilization/fractionation and related mechanisms. Herein, we investigated REE mobilization from representative host minerals induced by three representative organic ligands: oxalate, citrate, and the siderophore desferrioxamine B (DFOB). Reaction pH conditions were selected to isolate the ligand-complexation effect versus proton dissolution. The presence of these organic ligands displayed varied impacts, with REE dissolution remarkably enhanced by citrate, mildly promoted by DFOB, and showing divergent effects in the presence of oxalate, depending on the mineral type and reaction pH. Thermodynamic modeling indicates the dominant presence of REE-ligand complexes under studied conditions and suggests ligand-promoted REE dissolution to be the dominant mechanism, consistent with experimental data. In addition, REE dissolution mediated by these ligands exhibited a distinct fractionation toward heavy REE (HREE) enrichment in the solution phase, which can be mainly attributed to the formation of thermodynamically predicted more stable HREE-ligand complexes. The combined thermodynamic modeling and experimental approach provides a framework for the systematic investigation of REE mobilization, distribution, and fractionation in the presence of organic ligands in natural systems and for the design of green extraction technologies.

2.
Accid Anal Prev ; 203: 107622, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723334

ABSTRACT

A lane-changing (LC) maneuver may cause the follower in the target lane (new follower) to decelerate and give up space, potentially affecting crash risk and traffic flow efficiency. In congested flow, a more aggressive LC maneuver occurs where the lane changer is partially next to the new follower and creates negative gaps, namely negative gap forced LC (NGFLC). Although NGFLC forms the foundation of sideswipe crashes, little has been done to address its impacts and the contributing factors. To tackle this issue, a total of 15,810 LC trajectory samples are extracted from three drone videos at different locations. These samples are categorized into NGFLC and normal LC groups for comparative analysis. Five commonly used conflict indicators are extended into two-dimensional to evaluate the crash risk of LC maneuver. The change of time gaps during LC maneuver are examined to quantify the impact of LC on traffic flow efficiency. We find that NGFLCs significantly increase crash risk, reflected by the number of hazardous LC events and potential crash areas compared to normal LC. Additionally, results reveal that both the lane changer and the new follower tend to maintain a larger time gap after NGFLCs. Factors including time headway, relative speed, and historical gaps in the target lane significantly affect NGFLC incidence. Once the movement of the leader in the original lane is taken into account, the prediction accuracy improves from 81% to 91%. The transferability tests indicate that the findings about the negative impact of NGFLC and the accuracy of its prediction model are consistent across different locations. These findings hold implications for driving assistance systems to better predict and mitigate NGFLCs.

3.
Arch Gerontol Geriatr ; 124: 105452, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38728820

ABSTRACT

BACKGROUNDS: Intrinsic capacity (IC), the sum of individual mental and physical capabilities, as well as living environment and behavior, jointly determine the functional ability of older adults, shifting the focus from disease to function. At the population level, IC in older adults is associated with adverse health outcomes, such as disability, falls, and death. At the individual level, IC changes dynamically. However, studies on the longitudinal IC trajectory and the factors influencing IC deterioration are limited. We aimed to analyze the IC trajectory and explore the risk factors for IC deterioration in Chinese older adults. METHODS: Data were obtained from the baseline (2011-2012) and 4-year follow-up (2015) CHARLS surveys, including 1906 people aged 60 years and older. IC comprises six dimensions: locomotion, vitality, hearing, vision, cognition, and psychology. IC trajectory was categorized into three groups: improved, maintained, and deteriorated. Logistic regression analysis was used to analyze factors influencing the trajectory of IC deterioration. RESULTS: After 4 years, 32.1 % had deteriorated, 38.5 % remained stable, and 29.4 % had improved. Age, low level of education, widowed were independently associated with IC deterioration. CONCLUSIONS: Dynamic IC monitoring supports the development of individualized intervention policies to delay or prevent IC deterioration.

4.
Accid Anal Prev ; 203: 107640, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759380

ABSTRACT

The primary objective of this study was to evaluate the performance of traffic conflict measures for real-time crash risk prediction. Drone recordings were collected from a freeway section in Nanjing, China, over a year. Twenty rear-end crashes and their associated trajectories were obtained. Vehicle trajectories preceding the crash were segmented based on different time periods to represent varying crash conditions. The Extreme Value Theory (EVT) approach combined with a block maxima sampling method was then employed to investigate the generalized extreme value (GEV) distributions of extremely risky events under non-crash and crash conditions. The prediction performance was demonstrated by the differences in GEV distributions under these two conditions. Within the proposed modeling framework, the performances of Time-to-Collision (TTC), Deceleration Rate to Avoid a Crash (DRAC), and Absolute value of Derivative of Instantaneous Acceleration (ADIA) were examined and compared. The results revealed a decreasing trend in the prediction performances as the preceding time window before a crash increased. For any given length of crash conditions, TTC consistently outperformed DRAC and ADIA. Notably, TTC's reliability in crash risk prediction became more uncertain when forecasting crashes more than 2 s in advance. This study provided the optimal thresholds for TTC and ADIA for practical application in crash early warning. The methods and results in this study have the potential to be used for crash risk assessments in autonomous vehicles.

5.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747287

ABSTRACT

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Subject(s)
Angiopoietin-2 , Forkhead Box Protein O1 , Ion Channels , Lymphangiogenesis , Lymphedema , Receptor, TIE-1 , Signal Transduction , Ion Channels/metabolism , Ion Channels/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Humans , Animals , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Mice , Lymphangiogenesis/genetics , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics , Endothelial Cells/metabolism , Mechanotransduction, Cellular , ADAM17 Protein/metabolism , ADAM17 Protein/genetics
6.
Chem Asian J ; : e202400447, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738448

ABSTRACT

The In-based double perovskite halides have been widely studied for promising optical-electric applications. The halide hexagonal perovskite Cs2LiInCl6 was isolated using solid-state reactions and investigated using X-ray diffraction and solid-state NMR spectra. The material adopts a 12-layered hexagonal structure (12R) consisting of layered cationic orders driven by the cationic charge difference and has Li+ cations in the terminal site and In3+ in the central site of face-shared octahedron trimers. Such a cationic ordering pattern is stabilized by electrostatic repulsions between the next-nearest neighboring cations in the trimers. The LiCl6 octahedron displays large distortion and is confirmed by 7Li SSNMR in the Cs2LiInCl6. The Cs2LiInCl6 material has a direct bandgap of ~ 4.98 eV. The Cs2LiInCl6: Mn displays redshift luminescence (centered at ~610 - 622 nm) from the substituted Mn2+ emission in octahedron with larger PLQY (17.8%-48%) compared with that of Cs2NaInCl6: Mn2+.  The Mn-doped materials show luminescent concentration quenching and thermal quenching. The composition Cs2Li0.99In0.99Mn0.02Cl6 exhibits the highest PL intensity, a maximum PLQY of 48%, and high luminescent retention rate of ~ 86% below 400 K and is suitable for application for pc-LED. These findings contribute to our understanding of the chloride perovskites and hold potential for widespread optical applications.

7.
Front Pediatr ; 12: 1337158, 2024.
Article in English | MEDLINE | ID: mdl-38562137

ABSTRACT

Background: Limited research has explored the relationship between adhering to 24-h Movement Behaviour guidelines and mental health in Chinese preschool children. The objectives of this study encompassed two primary goals: (1) to investigate the adherence of preschool children in China to the 24-h Movement Behaviour guidelines; and (2) to analyze the relationship between fulfilling various combinations of these guidelines and mental health, identifying the most advantageous combination. Methods: Utilizing a convenience sampling approach, this study included 205 preschool children (117 boys and 88 girls, average age 4.8 ± 0.51 years) from five kindergartens in Hengyang, Hunan Province. The physical activity (PA) and sedentary behaviour of preschool children were objectively assessed using waist-worn accelerometers, while sleep duration and screen time were reported by the children's parents. To evaluate mental health, the parent version of the internationally validated Strength and Difficulties Questionnaire (SDQ) was employed, which measures externalizing problems, internalizing problems, and prosocial behaviour. Employing Mplus 8.0 for Structural Equation Modeling analysis, while controlling for demographic variables, the study explored the connection between preschool children's mental health and their adherence to the 24-h Movement Behaviour guidelines. Results: Worryingly, merely 14.6% of preschoolers met the recommended guidelines for all three aspects (PA, sleep duration, and screen time). Positive correlations were identified between meeting PA guidelines and displaying prosocial behaviour (ß = 0.184; p < 0.05), while screen time adherence exhibited a negative correlation with externalizing problems (ß = -0.207; p < 0.05). Similarly, there was a negative association between sleep duration adherence and externalizing problems (ß = -0.191; p < 0.05). Meeting all three recommended guidelines was notably linked to enhanced prosocial behaviour (ß = 0.464; p < 0.05), while following the screen time and sleep duration guidelines was negatively associated with externalizing problems (ß = -0.246; p < 0.05). Conclusion: This study underscores the limited adherence of Chinese preschoolers to the comprehensive 24-h Movement Behaviour guidelines. Noteworthy findings include the positive influence of PA on prosocial behaviour, alongside the significant roles that sleep duration and screen time play in mitigating externalizing problems within this age group. Alignment with the 24-h Movement Behaviour guidelines is associated with more favorable mental health indicators in preschoolers.

8.
Accid Anal Prev ; 201: 107573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614051

ABSTRACT

This study aims to investigate the predictability of surrogate safety measures (SSMs) for real-time crash risk prediction. We conducted a year-long drone video collection on a busy freeway in Nanjing, China, and collected 20 rear-end crashes. The predictability of SSMs was defined as the probability of crash occurrence when using SSMs as precursors to crashes. Ridge regression models were established to explore contributing factors to the predictability of SSMs. Four commonly used SSMs were tested in this study. It was found that modified time-to-collision (MTTC) outperformed other SSMs when the early warning capability was set at a minimum of 1 s. We further investigated the cost and benefit of SSMs in safety interventions by evaluating the number of necessary predictions for successful crash prediction and the proportion of crashes that can be predicted accurately. The result demonstrated these SSMs were most efficient in proactive safety management systems with an early warning capability of 1 s. In this case, 308, 131, 281, and 327,661 predictions needed to be made before a crash could be successfully predicted by TTC, MTTC, DRAC, and PICUD, respectively, achieving 75 %, 85 %, 35 %, and 100 % successful crash identifications. The ridge regression results indicated that the predefined threshold had the greatest impact on the predictability of all tested SSMs.


Subject(s)
Accidents, Traffic , Accidents, Traffic/prevention & control , Accidents, Traffic/statistics & numerical data , Humans , China , Safety/statistics & numerical data , Risk Assessment/methods , Video Recording , Regression Analysis , Automobile Driving/statistics & numerical data , Forecasting
9.
Accid Anal Prev ; 201: 107570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614052

ABSTRACT

To improve the traffic safety and efficiency of freeway tunnels, this study proposes a novel variable speed limit (VSL) control strategy based on the model-based reinforcement learning framework (MBRL) with safety perception. The MBRL framework is designed by developing a multi-lane cell transmission model for freeway tunnels as an environment model, which is built so that agents can interact with the environment model while interacting with the real environment to improve the sampling efficiency of reinforcement learning. Based on a real-time crash risk prediction model for freeway tunnels that uses random deep and cross networks, the safety perception function inside the MBRL framework is developed. The reinforcement learning components fully account for most current tunnels' application conditions, and the VSL control agent is trained using a deep dyna-Q method. The control process uses a safety trigger mechanism to reduce the likelihood of crashes caused by frequent changes in speed. The efficacy of the proposed VSL strategies is validated through simulation experiments. The results show that the proposed VSL strategies significantly increase traffic safety performance by between 16.00% and 20.00% and traffic efficiency by between 3.00% and 6.50% compared to a fixed speed limit approach. Notably, the proposed strategies outperform traditional VSL strategy based on the traffic flow prediction model in terms of traffic safety and efficiency improvement, and they also outperform the VSL strategy based on model-free reinforcement learning framework when sampling efficiency is considered together. In addition, the proposed strategies with safety triggers are safer than those without safety triggers. These findings demonstrate the potential for MBRL-based VSL strategies to improve traffic safety and efficiency within freeway tunnels.


Subject(s)
Accidents, Traffic , Automobile Driving , Reinforcement, Psychology , Safety , Accidents, Traffic/prevention & control , Humans , Automobile Driving/psychology , Environment Design , Computer Simulation , Models, Theoretical
10.
Int J Biol Sci ; 20(6): 2297-2309, 2024.
Article in English | MEDLINE | ID: mdl-38617545

ABSTRACT

Background: Tyrosine kinase with immunoglobulin and EGF-like domains 1 (TIE1) is known as an orphan receptor prominently expressed in endothelial cells and participates in angiogenesis by regulating TIE2 activity. Our previous study demonstrated elevated TIE1 expression in cervical cancer cells. However, the role of TIE1 in cervical cancer progression, metastasis and treatment remains elusive. Methods: Immunohistochemistry staining for TIE1 and Basigin was performed in 135 human cervical cancer tissues. Overexpressing vectors and siRNAs were used to manipulate gene expression in tumor cells. Colony formation, wound healing, and transwell assays were used to assess cervical cancer cell proliferation and migration in vitro. Subcutaneous xenograft tumor and lung metastasis mouse models were established to examine tumor growth and metastasis. Co-Immunoprecipitation and Mass Spectrometry were applied to explore the proteins binding to TIE1. Immunoprecipitation and immunofluorescence staining were used to verify the interaction between TIE1 and Basigin. Cycloheximide chase assay and MG132 treatment were conducted to analyze protein stability. Results: High TIE1 expression was associated with poor survival in cervical cancer patients. TIE1 overexpression promoted the proliferation, migration and invasion of cervical cancer cells in vitro, as well as tumor growth and metastasis in vivo. In addition, Basigin, a transmembrane glycoprotein, was identified as a TIE1 binding protein, suggesting a pivotal role in matrix metalloproteinase regulation, angiogenesis, cell adhesion, and immune responses. Knockdown of Basigin or treatment with the Basigin inhibitor AC-73 reversed the tumor-promoting effect of TIE1 in vitro and in vivo. Furthermore, we found that TIE1 was able to interact with and stabilize the Basigin protein and stimulate the Basigin-matrix metalloproteinase axis. Conclusion: TIE1 expression in cervical cells exerts a tumor-promoting effect, which is at least in part dependent on its interaction with Basigin. These findings have revealed a TIE2-independent mechanism of TIE1, which may provide a new biomarker for cervical cancer progression, and a potential therapeutic target for the treatment of cervical cancer patients.


Subject(s)
Lung Neoplasms , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Basigin , Cell Adhesion , Endothelial Cells , Uterine Cervical Neoplasms/genetics
11.
Chemistry ; : e202401079, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563628

ABSTRACT

The interactions between ether naphthotube and a series of dication guests in organic solution were investigated. It was found that ether naphthotube formed stable host-guest complexes selectively with these guests in a 1 : 1 stoichiometric ratio with association constants ranging from 102 to 106 M-1, which were confirmed by 1H-NMR spectra and ITC experiments. The host-guest interactions are driven by enthalpy change as the entropic factors are unfavorable. Positive correlations between ΔH and ΔS have been observed in the host-guest complexes. Furthermore, the para-substitution of the guests can significantly affect the binding affinities through a combination of field/inductive and resonance effects by following a linear free energy relationship. Based on the host-guest complexes composed of ether naphthotube and organic cations, two interlocked [2]rotaxanes were prepared by cationization reaction and Huisgen cycloaddition between the cations and the stopper components. The ether naphthotube-based host-guest complexes are useful for creating sophisticated interlocked molecules.

12.
Carbohydr Polym ; 335: 122107, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616081

ABSTRACT

In this study, the polyvinylpyrrolidone-alizarin nanoparticles (PVP-AZ NPs) with favorable water dispersion and the carbon quantum dots (RQDs) with aggregate induced emission effect were synthesized to construct an eco-friendly film for food freshness monitoring. The introduction of PVP-AZ NPs and RQDs enhanced the network structure and thermal stability of the cassava starch/polyvinyl alcohol film, and reduced its crystallinity and light transmittance via non-covalent binding with the film-forming matrix. The developed film exhibited visually recognizable colorimetric and fluorescent responses to ammonia at 0.025-25 mg/mL, and it can be reused at least 6 times. Practical application experiment proved that the film, as an indicator label, can achieve accurate, real-time, and visual dynamic monitoring of the freshness of shrimp stored at 25 °C, 4 °C, and - 20 °C under daylight (orange yellow to purple) and UV light (red to blue). The integration of multivariate detection technology can eliminate the interference of external factors by self-correction to improve sensitivity and reliability, which provides a reference for the development of other food quality and safety monitoring platforms.


Subject(s)
Anthraquinones , Manihot , Animals , Polyvinyl Alcohol , Reproducibility of Results , Seafood , Crustacea , Povidone , Starch
13.
Hum Vaccin Immunother ; 20(1): 2337161, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38566539

ABSTRACT

The epidemiological and clinical aspects of Human Papillomavirus (HPV) infection in women have been extensively studied. However, there is a lack of information regarding HPV characteristics in males. In this study, we conducted a retrospective and observational study of 3737 consecutive male individuals attending outpatient clinics of Guangdong Women and Children Hospital from 2012 to 2023 in Guangzhou, South China, to determine the age- and genotype-specific prevalence of HPV in men. The results showed the overall prevalence of HPV among men was 42.15% (1575/3737), with variations ranging from 29.55% to 81.31% across distinct diagnostic populations. Low-risk HPV6 (15.47%), HPV11 (8.94%), and high-risk HPV52 (5.51%) were the most common types. The annual HPV prevalence decreased significantly (Z = -3.882, p < .001), ranging from 31.44% to 52.90%. 28.77% (1075/3737) of men manifested infection with a singular HPV type, predominantly identified as a low-risk type. The age-specific distribution of HPV infections revealed distinctive peaks in the < 25 y age group (47.60%, 208/437) and the 40-44 y age group (44.51%, 154/346). Notably, the positive rate of Chlamydia trachomatis was significantly higher among HPV-positive individuals in comparison to HPV-negatives (16.14% vs. 11.25%, p < .05). Our findings reveal a substantial prevalence of HPV infection among outpatient men in Guangzhou, South China. It is recommended to consider the inclusion of HPV vaccination for adolescent males in national immunization schedules, once an adequate supply of vaccines is accessible.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Male , China/epidemiology , Genotype , Papillomaviridae/genetics , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , Prevalence , Retrospective Studies , Risk , Uterine Cervical Neoplasms/prevention & control , Vaccination , Young Adult , Adult
14.
Accid Anal Prev ; 202: 107552, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38669902

ABSTRACT

The use of real-time traffic conflicts for safety studies provide more insight into how important dynamic signal cycle-related characteristics can affect intersection safety. However, such short-time window for data collection raises a critical issue that the observed conflicts are temporally correlated. As well, there is likely unobserved heterogeneity across different sites that exist in conflict data. The objective of this study is to develop real-time traffic conflict rates models simultaneously accommodating temporal correlation and unobserved heterogeneity across observations. Signal cycle level traffic data, including traffic conflicts, traffic and shock wave characteristics, collected from six signalized intersections were used. Three types of Tobit models: conventional Tobit model, temporal Tobit (T-Tobit) model, and temporal grouped random parameters (TGRP-Tobit) model were developed under full Bayesian framework. The results show that significant temporal correlations are found in T-Tobit models and TGRP-Tobit models, and the inclusion of temporal correlation considerably improves the goodness-of-fit of these Tobit models. The TGRP-Tobit models perform best with the lowest Deviance Information Criteria (DIC), indicating that accounting for the unobserved heterogeneity can further improve the model fit. The parameter estimates show that real-time traffic conflict rates are significantly associated with traffic volume, shock wave area, shock wave speed, queue length, and platoon ratio.


Subject(s)
Automobile Driving , Bayes Theorem , Models, Statistical , Humans , Automobile Driving/statistics & numerical data , Accidents, Traffic/prevention & control , Accidents, Traffic/statistics & numerical data , Environment Design , Safety , Time Factors
15.
Front Public Health ; 12: 1288262, 2024.
Article in English | MEDLINE | ID: mdl-38560447

ABSTRACT

The 24-h movement behavior of preschoolers comprises a spectrum of activities, including moderate-to-vigorous intensity physical activity (MVPA), light-intensity physical activity (LPA), screen-based sedentary behavior (SCSB), non-screen-based sedentary behavior (NSCSB), and sleep. While previous research has shed light on the link between movement behaviors and children's mental health, the specific impacts on the unique demographic of Chinese preschoolers remain underexplored. This study significantly contributes to the literature by exploring how 24-h movement behavior affects the mental health of preschoolers in a Chinese context. The study involved205 Chinese preschool children (117 boys and 88 girls) between the ages of 3 and 6 years wore accelerometers to measure their LPA, MVPA, and sedentary behavior (SB), while their parents reported the time spent on sleep and SCSB. The parents also completed the Strength and Difficulties Questionnaire to assess their children's mental health. The study used compositional regression and isotemporal substitution models to examine the relationship between the various components of 24-h movement behavior and mental health. The results showed that greater NCSSB compared to MVPA, LPA, sleep, and SCSB was associated with good prosocial behavior and lower scores on externalizing problems. This highlights the potential of NSCSB as a beneficial component in the daily routine of preschoolers for fostering mental well-being. Replacing 15 min of sleep and SCSB with 15 min of NSCSB was associated with a decrease of 0.24 and 0.15 units, respectively, in externalizing problems. Reallocating 15 min of sleep to NSCSB was linked to an increase of 0.11 units in prosocial behavior. There were no significant substitution effects between LPA and MVPA time with any other movement behavior on prosocial behavior and externalizing problems. Given the positive associations observed, further longitudinal studies are necessary to explore the link between 24-h movement behavior and mental health in preschool children.


Subject(s)
Accelerometry , Mental Health , Male , Female , Humans , Child, Preschool , Child , Accelerometry/methods , Exercise , Sedentary Behavior , Time Factors
16.
Adv Mater ; : e2402005, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598862

ABSTRACT

The emerging sodium-ion batteries (SIBs) are one of the most promising candidates expected to complement lithium-ion batteries and diversify the battery market. However, the exploitation of cathode materials with high-rate performance and long-cycle stability for SIBs has remained one of the major challenges. To this end, an efficient approach to enhance rate and cycling performance by introducing an ordered bicontinuous porous structure into cathode materials of SIBs is demonstrated. Prussian blue analogues (PBAs) are selected because they are recognized as a type of most promising SIB cathode materials. Thanks to the presence of 3D continuous channels enabling fast Na+ ions diffusion as well as the intrinsic mechanical stability of bicontinuous architecture, the resultant PBAs exhibit excellent rate capability (80 mAh g-1 at 2.5 A g-1) and ultralong cycling life (>3000 circulations at 0.5 A g-1), reaching the top performance of the reported PBA-based cathode materials. This study opens a new avenue for boosting sluggish ion diffusion kinetics in electrodes of rechargeable batteries and also provides a new paradigm for solving the dilemma that electrodes' failure due to high-stress concentration upon ion storage.

17.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38537946

ABSTRACT

BACKGROUND: During neonatal and paediatric high-flow nasal cannula therapy, optimising the flow setting is crucial for favourable physiological and clinical outcomes. However, considerable variability exists in clinical practice regarding initial flows and subsequent adjustments for these patients. Our review aimed to summarise the impact of various flows during high-flow nasal cannula treatment in neonates and children. METHODS: Two investigators independently searched PubMed, Embase, Web of Science, Scopus and Cochrane for in vitro and in vivo studies published in English before 30 April 2023. Studies enrolling adults (≥18 years) or those using a single flow setting were excluded. Data extraction and risk of bias assessments were performed independently by two investigators. The study protocol was prospectively registered with PROSPERO (CRD42022345419). RESULTS: 38 406 studies were identified, with 44 included. In vitro studies explored flow settings' effects on airway pressures, humidity and carbon dioxide clearance; all were flow-dependent. Observational clinical studies consistently reported that higher flows led to increased pharyngeal pressure and potentially increased intrathoracic airway pressure (especially among neonates), improved oxygenation, and reduced respiratory rate and work of breathing up to a certain threshold. Three randomised controlled trials found no significant differences in treatment failure among different flow settings. Flow impacts exhibited significant heterogeneity among different patients. CONCLUSION: Individualising flow settings in neonates and young children requires consideration of the patient's peak inspiratory flow, respiratory rate, heart rate, tolerance, work of breathing and lung aeration for optimal care.


Subject(s)
Cannula , Oxygen Inhalation Therapy , Infant, Newborn , Adult , Child , Humans , Child, Preschool , Oxygen Inhalation Therapy/adverse effects , Respiration , Treatment Failure , Oxygen/therapeutic use
18.
RSC Adv ; 14(15): 10152-10160, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38544946

ABSTRACT

Umami peptides are new ingredients for the condiment and seasoning industries, with healthy and nutrition characteristics, some of which were identified from aquatic proteins. This study aims to further explore novel umami peptides from Atlantic cod (Gadus morhua) by combining in silico, nano-HPLC-MS/MS, sensory evaluation, and electronic tongue analysis. Two novel peptides, Leu-Val-Asp-Lys-Leu (LVDKL) and Glu-Ser-Lys-Ile-Leu (ESKIL), from the myosin heavy chain of Atlantic cod (Gadus morhua), were screened and confirmed to have strong umami tastes with the thresholds of 0.427 mM and 0.574 mM, respectively. The molecular docking was adopted to explore the interactions between the umami peptides and the umami taste receptor T1R1/T1R3, which showed that the umami peptides interacted with T1R1/T1R3 mainly by electrostatic interaction, hydrogen bond interaction, and hydrophobic interaction. Furthermore, the physicochemical properties of the peptides were investigated by in silico methods and cell viability experiments. This study will provide a better understanding of the umami taste in Atlantic cod and will promote the development of condiments and seasonings.

19.
Environ Pollut ; 348: 123886, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38556153

ABSTRACT

Iron-doping modification is a prevailing approach for improving adsorption capability of biochar with environmental friendliness, but usually requires high temperature and suffers from iron aggregation. Herein, a highly adsorptive biochar was manufactured via sequential disperse impregnation of iron by refluxing and pyrolysis at low temperature for eliminating tetracycline (TC) from aqueous solution. Iron oxides and hydroxides were impregnated and stably dispersed on the carbon matrix as pyrolyzed at 200 °C, meanwhile abundant oxygen and nitrogen functional groups were generated on surface. The iron-doped biochar exhibited up to 891.37 mg/g adsorption capacity at pH 5, and could be recycled with high adsorption capability. The adsorption of TC should be mostly contributed to the hydrogen bonding of N/O functional groups and the hydrogen bonding/coordination of iron oxides/hydroxides. This would provide a valuable guide for dispersedly doping iron and conserving functional groups on biochar, and a super iron-doped biochar was prepared with superior recyclability.


Subject(s)
Iron , Water Pollutants, Chemical , Temperature , Adsorption , Pyrolysis , Charcoal , Tetracycline , Anti-Bacterial Agents , Water , Hydroxides , Water Pollutants, Chemical/analysis , Kinetics
20.
Fluids Barriers CNS ; 21(1): 25, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454518

ABSTRACT

BACKGROUND: Understanding of the cerebrospinal fluid (CSF) circulation is essential for physiological studies and clinical diagnosis. Real-time phase contrast sequences (RT-PC) can quantify beat-to-beat CSF flow signals. However, the detailed effects of free-breathing on CSF parameters are not fully understood. This study aims to validate RT-PC's accuracy by comparing it with the conventional phase-contrast sequence (CINE-PC) and quantify the effect of free-breathing on CSF parameters at the intracranial and extracranial levels using a time-domain multiparametric analysis method. METHODS: Thirty-six healthy participants underwent MRI in a 3T scanner for CSF oscillations quantification at the cervical spine (C2-C3) and Sylvian aqueduct, using CINE-PC and RT-PC. CINE-PC uses 32 velocity maps to represent dynamic CSF flow over an average cardiac cycle, while RT-PC continuously quantifies CSF flow over 45-seconds. Free-breathing signals were recorded from 25 participants. RT-PC signal was segmented into independent cardiac cycle flow curves (Qt) and reconstructed into an averaged Qt. To assess RT-PC's accuracy, parameters such as segmented area, flow amplitude, and stroke volume (SV) of the reconstructed Qt from RT-PC were compared with those derived from the averaged Qt generated by CINE-PC. The breathing signal was used to categorize the Qt into expiratory or inspiratory phases, enabling the reconstruction of two Qt for inspiration and expiration. The breathing effects on various CSF parameters can be quantified by comparing these two reconstructed Qt. RESULTS: RT-PC overestimated CSF area (82.7% at aqueduct, 11.5% at C2-C3) compared to CINE-PC. Stroke volumes for CINE-PC were 615 mm³ (aqueduct) and 43 mm³ (spinal), and 581 mm³ (aqueduct) and 46 mm³ (spinal) for RT-PC. During thoracic pressure increase, spinal CSF net flow, flow amplitude, SV, and cardiac period increased by 6.3%, 6.8%, 14%, and 6%, respectively. Breathing effects on net flow showed a significant phase difference compared to the other parameters. Aqueduct-CSF flows were more affected by breathing than spinal-CSF. CONCLUSIONS: RT-PC accurately quantifies CSF oscillations in real-time and eliminates the need for cardiac synchronization, enabling the quantification of the cardiac and breathing components of CSF flow. This study quantifies the impact of free-breathing on CSF parameters, offering valuable physiological references for understanding the effects of breathing on CSF dynamics.


Subject(s)
Cerebral Ventricles , Magnetic Resonance Imaging , Humans , Cerebral Ventricles/physiology , Cerebral Aqueduct/diagnostic imaging , Cerebral Aqueduct/physiology , Respiration , Pressure , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...