Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896048

ABSTRACT

Pericarp color is a crucial commercial trait influencing consumer preferences for bitter gourds. However, until now, the gene responsible for this trait has remained unidentified. In this study, we identified a gene (McAPRR2) controlling pericarp color via a genome-wide association study (GWAS) utilizing the resequencing data of 106 bitter gourd accessions. McAPRR2 exhibits three primary haplotypes: Hap1 is a wild type with a green pericarp, Hap2 is a SA (South Asian) and SEA (Southeast Asia) type with a green pericarp, and Hap3 is primarily a SEA type with a light green pericarp. The McAPRR2 haplotype is significantly correlated with both pericarp color and ecological type. Importantly, McAPRR2 with the light green pericarp demonstrated premature termination due to a 15 bp sequence insertion. The phylogenetic tree clustered according to pericarp color and ecological type, using SNPs located in the McAPRR2 gene and its promoter. High πwild/SEA and πSA/SEA values indicate high nucleotide diversity between wild and SEA types and between SA and SEA types in the McAPRR2 gene. The haplotypes, phylogenetic tree, and nucleotide diversity of McAPRR2 suggest that McAPRR2 has undergone domestication selection. This study identifies McAPRR2 as the key gene determining pericarp color in bitter gourds and introduces a novel insight that McAPRR2 is subject to domestication selection.

2.
Genomics ; 114(4): 110400, 2022 07.
Article in English | MEDLINE | ID: mdl-35691507

ABSTRACT

Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.


Subject(s)
Asteraceae , Sesquiterpenes , Asteraceae/genetics , Chromosomes , Plant Breeding , Vegetables/genetics
SELECTION OF CITATIONS
SEARCH DETAIL