Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cell Prolif ; : e13649, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38736355

ABSTRACT

Cell division is a highly regulated process essential for the accurate segregation of chromosomes. Central to this process is the assembly of a bipolar mitotic spindle, a highly dynamic microtubule (MT)-based structure responsible for chromosome movement. The nucleation and dynamics of MTs are intricately regulated by MT-binding proteins. Over the recent years, various MT-binding proteins have been reported to undergo liquid-liquid phase separation, forming either single- or multi-component condensates on MTs. Herein, we provide a comprehensive summary of the phase separation characteristics of these proteins. We underscore their critical roles in MT nucleation, spindle assembly and kinetochore-MT attachment during the cell division process. Furthermore, we discuss the current challenges and various remaining unsolved problems, highlights the ongoing research efforts aimed at a deeper understanding of the role of the phase separation process during spindle assembly and orientation. Our review aims to contribute to the collective knowledge in this area and stimulate further investigations that will enhance our comprehension of the intricate mechanisms governing cell division.

2.
Int J Clin Health Psychol ; 24(2): 100453, 2024.
Article in English | MEDLINE | ID: mdl-38450251

ABSTRACT

Background: Time frees people from bereavement, but also fades childhood happiness, these dynamics can be understood through the framework of past temporal discounting (PTD), which refers to the gradual decrease in affect intensity elicited by recalling positive or negative events over time. Despite its importance, measuring PTD has been challenging, and its impact on real-life outcomes, such as mental health remains unknown. Method: Here, we employed a longitudinal tracking approach to measure PTD in healthy participants (N = 210) across eight time points. We recorded changes in affect intensity for positive and negative events and examined the impact of PTD on mental health outcomes, including general mental well-being, depression, stress sensitivity, and etc. Results: The results of Bayesian multilevel modeling indicated that the affect intensity for positive and negative events discounted over time at a gradually decelerating rate. Furthermore, we found that maintaining good mental health heavily depended on rapid PTD of negative events and slow PTD of positive events. Conclusions: These results provide a comprehensive characterization PTD and demonstrate its importance in maintaining mental health.

3.
J Cell Sci ; 137(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38063216

ABSTRACT

In Chlamydomonas, the channel polycystin 2 (PKD2) is primarily present in the distal region of cilia, where it is attached to the axoneme and mastigonemes, extracellular polymers of MST1. In a smaller proximal ciliary region that lacks mastigonemes, PKD2 is more mobile. We show that the PKD2 regions are established early during ciliogenesis and increase proportionally in length as cilia elongate. In chimeric zygotes, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia, whereas the assembly of the distal region was hindered, suggesting that axonemal binding of PKD2 requires de novo assembly of cilia. We identified the protein Small Interactor of PKD2 (SIP), a PKD2-related, single-pass transmembrane protein, as part of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from the cilia. Like the pkd2 and mst1 mutants, sip mutant cells swam with reduced velocity. Cilia of the pkd2 mutant beat with an increased frequency but were less efficient in moving the cells, suggesting a structural role for the PKD2-SIP-mastigoneme complex in increasing the effective surface of Chlamydomonas cilia.


Subject(s)
Chlamydomonas , Cilia , Cilia/metabolism , Chlamydomonas/genetics , Chlamydomonas/metabolism , Proteins/metabolism , Axoneme/metabolism
4.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37398320

ABSTRACT

In Chlamydomonas cilia, the ciliopathy-relevant TRP channel PKD2 is spatially compartmentalized into a distal region, in which PKD2 binds the axoneme and extracellular mastigonemes, and a smaller proximal region, in which PKD2 is more mobile and lacks mastigonemes. Here, we show that the two PKD2 regions are established early during cilia regeneration and increase in length as cilia elongate. In abnormally long cilia, only the distal region elongated whereas both regions adjusted in length during cilia shortening. In dikaryon rescue experiments, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia whereas assembly of the distal region was hindered, suggesting that axonemal docking of PKD2 requires de novo ciliary assembly. We identified Small Interactor of PKD2 (SIP), a small PKD2-related protein, as a novel component of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from mutant cilia. Like the pkd2 and mst1 mutants, sip swims with reduced velocity. Cilia of the pkd2 mutant beat with normal frequency and bending pattern but were less efficient in moving cells supporting a passive role of the PKD2-SIP-mastigoneme complexes in increasing the effective surface of Chlamydomonas cilia.

5.
Sci Signal ; 16(785): eade8111, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37192300

ABSTRACT

Bacillus cereus is a Gram-positive bacterium that mainly causes self-limiting emetic or diarrheal illness but can also cause skin infections and bacteremia. Symptoms of B. cereus ingestion depend on the production of various toxins that target the gastric and intestinal epithelia. From a screen of bacterial isolates from human stool samples that compromised intestinal barrier function in mice, we identified a strain of B. cereus that disrupted tight and adherens junctions in the intestinal epithelium. This activity was mediated by the pore-forming exotoxin alveolysin, which increased the production of the membrane-anchored protein CD59 and of cilia- and flagella-associated protein 100 (CFAP100) in intestinal epithelial cells. In vitro, CFAP100 interacted with microtubules and promoted microtubule polymerization. CFAP100 overexpression stabilized microtubules in intestinal epithelial cells, leading to disorganization of the microtubule network and perturbation of tight and adherens junctions. The disruption of cell junctions by alveolysin depended on the increase in CFAP100, which in turn depended on CD59 and the activation of PI3K-AKT signaling. These findings demonstrate that, in addition to forming membrane pores, B. cereus alveolysin can permeabilize the intestinal epithelium by disrupting epithelial cell junctions in a manner that is consistent with intestinal symptoms and may allow the bacteria to escape the intestine and cause systemic infections. Our results suggest the potential value of targeting alveolysin or CFAP100 to prevent B. cereus-associated intestinal diseases and systemic infections.


Subject(s)
Bacillus cereus , Cilia , Humans , Animals , Mice , Bacillus cereus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Intestinal Mucosa , Exotoxins/metabolism , Flagella
6.
Chin Herb Med ; 15(1): 37-44, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36875439

ABSTRACT

Objective: Agarwood-a resinous wood produced by Aquilaria plants in response to injury or artificial induction-is a valuable medicinal and fragrance resource. Whole-Tree Agarwood-Inducing Technique (Agar-WIT) has been widely used to produce agarwood. However, the time-dependent characteristics of agarwood formation induced by Agar-WIT are yet to be clarified. To promote technologically efficient utilization and upgradation of Agar-WIT, the dynamic process and mechanism of agarwood formation were analyzed for one year. Methods: Agarwood formation percentage, barrier layer microscopic properties, extract levels, compound level, and characteristic chromatograms of agarwood were examined by referring to the Chinese Pharmacopeia (2020 version). Results: Agar-WIT could maintain a high percentage of agarwood formation over one year compared with that of healthy plants. Alcohol-soluble extract and agarotetrol levels showed fluctuating cyclic changes with peaks occurring first during the fifth and sixth months, and subsequently in the 11th month. Aquilaria trees subjected to Agar-WIT treatment for 1-12 months showed significant characteristics of a dynamic agarwood formation process. The barrier layer began to appear in the fourth month after treatment. Alcohol-soluble extractive levels in agarwood formed in the second month, and thereafter, exceeded 10.0%, and agarotetrol in agarwood produced after four months or later, exceeded 0.10%. Conclusion: According to the Chinese Pharmacopoeia, alcohol-soluble extractive levels in agarwood should not be less than 10.0% and agarotetrol level should exceed 0.10%. After four months of Agar-WIT treatment, the formed agarwood theoretically met these standards and was suitable for developed and utilization. However, the optimal harvest time was found to be the 11th month, followed by the sixth month after Agar-WIT treatment. Therefore, Agar-WIT resulted in swift agarwood formation and stable accumulation of alcohol-soluble extracts and agarotetrol. Thus, this method is efficient for large-scale cultivation of Aquilaria sinensis to produce agarwood and provide raw materials for the agarwood medicinal industry.

7.
Microsc Res Tech ; 86(10): 1333-1344, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36919819

ABSTRACT

Dracaena cambodiana Pierre ex Gagnep is an important plant resource for producing dragon's blood and one of most popular ornamental trees in China. For a better understanding of the physiological function of the stem, the structural characteristics and main substance histological location of the stems of D. cambodiana were studied. The structural characteristics of the different developmental stages of stems of D. cambodiana were observed and described detailly. And then a schematic diagram of the mature stem was created. Histochemical staining showed that two kinds of polysaccharides distributed in parenchymal cells. Saponins distributed mainly in ground tissue and phenolic compounds distributed mainly in the thick cell walls. An abundant of calcium oxalate raphide bundles were identified in cortex and primary tissue. Finally, the role of the above results in the taxonomy of Dracaena species and in their strong adaptability was discussed.


Subject(s)
Dracaena , Saponins , Plant Extracts/chemistry , Dracaena/chemistry , Phenols , China , Resins, Plant
8.
J Cell Sci ; 136(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36752106

ABSTRACT

Cilia are surface-exposed organelles that provide motility and sensory functions for cells, and it is widely believed that mechanosensation can be mediated through cilia. Polycystin-1 and -2 (PC-1 and PC-2, respectively) are transmembrane proteins that can localize to cilia; however, the molecular mechanisms by which polycystins contribute to mechanosensation are still controversial. Studies detail two prevailing models for the molecular roles of polycystins on cilia; one stresses the mechanosensation capabilities and the other unveils their ligand-receptor nature. The discovery that polycystins interact with mastigonemes, the 'hair-like' protrusions of flagella, is a novel finding in identifying the interactors of polycystins in cilia. While the functions of polycystins proposed by both models may coexist in cilia, it is hoped that a precise understanding of the mechanism of action of polycystins can be achieved by uncovering their distribution and interacting factors inside cilia. This will hopefully provide a satisfying answer to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in PC-1 and PC-2. In this Review, we discuss the characteristics of polycystins in the context of cilia and summarize the functions of mastigonemes in unicellular ciliates. Finally, we compare flagella and molecular features of PC-2 between unicellular and multicellular organisms, with the aim of providing new insights into the ciliary roles of polycystins in general.


Subject(s)
Cilia , Polycystic Kidney, Autosomal Dominant , Humans , Cilia/metabolism , TRPP Cation Channels/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Mutation
9.
Cogn Neurodyn ; 16(5): 1107-1121, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36237406

ABSTRACT

Procrastination behavior is quite ubiquitous, and should warrant cautions to us owing to its significant influences in poor mental health, low subjective well-beings and bad academic performance. However, how to identify this behavioral problem have not yet to be fully elucidated. 1132 participants were recruited as distribution of benchmark. 81 high trait procrastinators (HP) and matched low trait procrastinators (LP) were screened. To address this issue, we have built upon the hybrid brain model by using hierarchical machine learning techniques to classify HP and LP with multi-modalities neuroimaging data (i.e., grey matter volume, fractional anisotropy, static/dynamic amplitude of low frequency fluctuation and static/dynamic degree centrality). Further, we capitalized on the multiple Canonical Correlation Analysis (mCCA) and joint Independent Component Analysis algorithm (mCCA + jICA) to clarify its fusion neural components as well. The hybrid brain model showed high accuracy to discriminate HP and LP (accuracy rate = 87.04%, sensitivity rate = 86.42%, specificity rate = 85.19%). Moreover, results of mCCA + jICA model revealed several joint-discriminative neural independent components (ICs) of this classification, showing wider co-variants of frontoparietal cortex and hippocampus networks. In addition, this study demonstrated three modal-specific discriminative ICs for classification, highlighting the temporal variants of brain local and global natures in ventromedial prefrontal cortex (vmPFC) and PHC in HP. To sum-up, this research developed a hybrid brain model to identify trait procrastination with high accuracy, and further revealed the neural hallmarks of this trait by integrating neuroimaging fusion data. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-021-09765-z.

10.
BMC Plant Biol ; 22(1): 464, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36171555

ABSTRACT

BACKGROUND: Agarwood is a valuable Chinese medicinal herb and spice that is produced from wounded Aquilaria spp., is widely used in Southeast Asia and is highly traded on the market. The lack of highly responsive Aquilaria lines has seriously restricted agarwood yield and the development of its industry. In this article, a comparative transcriptome analysis was carried out between ordinary A. sinensis and Chi-Nan germplasm, which is a kind of A. sinensis tree with high agarwood-producing capacity in response to wounding stress, to elucidate the molecular mechanism underlying wounding stress in different A. sinensis germplasm resources and to help identify and breed high agarwood-producing strains. RESULTS: A total of 2427 and 1153 differentially expressed genes (DEGs) were detected in wounded ordinary A. sinensis and Chi-Nan germplasm compared with the control groups, respectively. KEGG enrichment analysis revealed that genes participating in starch metabolism, secondary metabolism and plant hormone signal transduction might play major roles in the early regulation of wound stress. 86 DEGs related to oxygen metabolism, JA pathway and sesquiterpene biosynthesis were identified. The majority of the expression of these genes was differentially induced between two germplasm resources under wounding stress. 13 candidate genes related to defence and sesquiterpene biosynthesis were obtained by WGCNA. Furthermore, the expression pattern of genes were verified by qRT-PCR. The candidate genes expression levels were higher in Chi-Nan germplasm than that in ordinary A. sinensis during early stage of wounding stress, which may play important roles in regulating high agarwood-producing capacity in Chi-Nan germplasm. CONCLUSIONS: Compared with A. sinensis, Chi-Nan germplasm invoked different biological processes in response to wounding stress. The genes related to defence signals and sesquiterepene biosynthesis pathway were induced to expression differentially between two germplasm resources. A total of 13 candidate genes were identified, which may correlate with high agarwood-producting capacity in Chi-Nan germplasm during the early stage of wounding stress. These genes will contribute to the development of functional molecular markers and the rapid breeding highly of responsive Aquilaria lines.


Subject(s)
Sesquiterpenes , Thymelaeaceae , Gene Expression Profiling , Oxygen/metabolism , Plant Breeding , Plant Growth Regulators/metabolism , Sesquiterpenes/metabolism , Starch/metabolism , Thymelaeaceae/genetics , Thymelaeaceae/metabolism
11.
J Cell Biol ; 221(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36040375

ABSTRACT

The GTPase Arl13b participates in ciliary protein transport, but its contribution to intraflagellar transport (IFT), the main motor-based protein shuttle of cilia, remains largely unknown. Chlamydomonas arl13 mutant cilia were characterized by both abnormal reduction and accumulation of select membrane-associated proteins. With respect to the latter, a similar set of proteins including phospholipase D (PLD) also accumulated in BBSome-deficient cilia. IFT and BBSome traffic were apparently normal in arl13. However, transport of PLD, which in control cells moves by BBSome-dependent IFT, was impaired in arl13, causing PLD to accumulate in cilia. ARL13 only rarely and transiently traveled by IFT, indicating that it is not a co-migrating adapter securing PLD to IFT trains. In conclusion, the loss of Chlamydomonas ARL13 impedes BBSome-dependent protein transport, resulting in overlapping biochemical defects in arl13 and bbs mutant cilia.


Subject(s)
Chlamydomonas , GTP Phosphohydrolases/metabolism , Phospholipase D , Chlamydomonas/genetics , Chlamydomonas/metabolism , Cilia/metabolism , Dyneins/metabolism , Flagella/metabolism , Kinesins , Membrane Proteins/metabolism , Phospholipase D/metabolism , Protein Transport
12.
Front Psychol ; 13: 838642, 2022.
Article in English | MEDLINE | ID: mdl-35814062

ABSTRACT

The amygdala has been shown to be responsive to face trustworthiness. While older adults typically give higher face trustworthiness ratings than young adults, a direct link between amygdala response and age-related differences in face trustworthiness evaluation has not yet been confirmed. Additionally, there is a possible modulatory role of the neuropeptide oxytocin in face trustworthiness evaluation, but the results are mixed and effects unexplored in aging. To address these research gaps, young, and older adults were randomly assigned to oxytocin or placebo self-administration via a nasal spray before rating faces on trustworthiness while undergoing functional magnetic resonance imaging. There was no overall age-group difference in face trustworthiness ratings, but older compared to young participants gave higher trustworthiness ratings to ambivalently untrustworthy-looking faces. In both age groups, lower face trustworthiness ratings were associated with higher left amygdala activity. A comparable negative linear association was observed in right amygdala but only among young participants. Also, in the right amygdala, lower and higher, compared to moderate, face trustworthiness ratings were associated with greater right amygdala activity (i.e., positive quadratic (U-shaped) association) for both age groups. Neither the behavioral nor the brain effects were modulated by a single dose of intranasal oxytocin administration, however. These results suggest dampened response to faces with lower trustworthiness among older compared to young adults, supporting the notion of reduced sensitivity to cues of untrustworthiness in aging. The findings also extend evidence of an age-related positivity effect to the evaluation of face trustworthiness.

13.
PLoS One ; 17(6): e0270167, 2022.
Article in English | MEDLINE | ID: mdl-35709217

ABSTRACT

Recently, Qi-Nan germplasm, the germplasm of Aquilaria species that easily forms agarwood, has been widely cultivated in Guangdong and Hainan Provinces in China. Since the morphological characteristics of Qi-Nan germplasm are similar to those of Aquilaria species and germplasm is bred by grafting, it is difficult to determine the source species of this germplasm by traditional taxonomic characteristics. In this study, we performed a DNA barcoding analysis of 58 major Qi-Nan germplasms as well as Aquilaria sinensis, A. yunnanensis, A. crassna, A. malaccensis and A. hirta with 5 primers (nuclear gene internal transcribed spacer 2 (ITS2) and the chloroplast genes matK, trnH-psbA, rbcL and trnL-trnF). This field survey in the Qi-Nan germplasm plantations in Guangdong and Hainan Provinces aimed to accurately identify the source species of Qi-Nan germplasm. According to the results, ITS2 and matK showed the most variability and the highest divergence at all genetic distances. This ITS2+matK combination, screened for with TaxonDNA analysis, showed the highest success rate in species identification of the Qi-Nan germplasm. Clustering in the phylogenetic trees constructed with Bayesian inference and maximum likelihood indicated that the Qi-Nan germplasm was most closely related to A. sinensis and more distantly related to A. yunnanensis, A. crassna, A. malaccensis and A. hirta. Therefore, this study determined that the source species of the Qi-Nan germplasm is A. sinensis.


Subject(s)
Plant Breeding , Thymelaeaceae , Bayes Theorem , China , DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Phylogeny , Thymelaeaceae/genetics
14.
Microsc Res Tech ; 85(8): 2904-2912, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35491427

ABSTRACT

Agarwood, a non-timber fragrant wood, is derived from wounded Aquilaria trees (Thymelaeaceae) and is widely used in traditional medicine, incense and perfume. Agarwood-like substances and programmed cell death (PCD) can be induced by wounding signals in the suspension cells and aerial roots of Aquilaria sinensis. In this study, the dynamic process of wound-induced agarwood formation in stems of A. sinensis was observed, and the occurrence of PCD was synchronously detected using techniques such as 4',6-diamidino-2-phenylindole and dUTP nick-end labeling staining. The results showed that the wounding was a induce signal for agarwood resin formation, meanwhile might induce PCD. Interxylary phloem and xylem ray were the main sites of agarwood resin formation and PCD occurrence. There might be a relationship between the spatiotemporal pattern of PCD and agarwood resin formation: more severe PCD corresponded to a higher rate of resin formation but a shorter resin formation time; conversely, slower PCD progression corresponded to a lower rate of resin formation but a longer resin formation time. Our findings are the first to demonstrate that PCD might occur in the process of wound-induced agarwood formation at the tree level, and the spatiotemporal pattern is closely related to the formation of agarwood resin. This study provides valuable insight for further studies on the relationship between PCD and agarwood formation. HIGHLIGHTS: Programmed cell death (PCD) might occur in the process of wound-induced agarwood formation at the tree level. Interxylary phloem and xylem ray were the main sites of agarwood resin formation and PCD occurrence. Spatiotemporal pattern of PCD might have a strong impact on agarwood resin formation.


Subject(s)
Thymelaeaceae , Apoptosis , Resins, Plant , Thymelaeaceae/metabolism , Wood
15.
Neuroimage ; 253: 119045, 2022 06.
Article in English | MEDLINE | ID: mdl-35259525

ABSTRACT

Growing evidence supports a role of the neuropeptide oxytocin in promoting social cognition and prosocial behavior, possibly via modulation of the salience of social information. The effect of intranasal oxytocin administration on the salience network, however, is not well understood, including in the aging brain. To address this research gap, 42 young (22.52 ± 3.02 years; 24 in the oxytocin group) and 43 older (71.12 ± 5.25 years; 21 in the oxytocin group) participants were randomized to either self-administer intranasal oxytocin or placebo prior to resting-state functional imaging. The salience network was identified using independent component analysis (ICA). Independent t-tests showed that individuals in the oxytocin compared to the placebo group had lower within-network resting-state functional connectivity, both for left amygdala (MNI coordinates: x = -18, y = 0, z = -15; corrected p < 0.05) within a more ventral salience network and for right insula (MNI coordinates: x = 39, y = 6, z = -6; corrected p < 0.05) within a more dorsal salience network. Age moderation analysis furthermore demonstrated that the oxytocin-reduced functional connectivity between the ventral salience network and the left amygdala was only present in older participants. These findings suggest a modulatory role of exogenous oxytocin on resting-state functional connectivity within the salience network and support age-differential effects of acute intranasal oxytocin administration on this network.


Subject(s)
Magnetic Resonance Imaging , Oxytocin , Administration, Intranasal , Aged , Aging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Oxytocin/pharmacology
16.
Neuroimage ; 251: 119015, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35189360

ABSTRACT

Background Neural connectome theory has been widely used in system neuroscience, and prompted our comprehension for the topological organizations of human cerebral cortex. However, how functional connectome is organized topologically in cerebellums remains unclear. Method Resting-state functional connectivity (rs-fcMRI) data were acquired from 1416 healthy adults in two independent samples. In Sample 1 (n = 976), both voxel-wise and node-wise topological properties for functional cerebellar connectome were estimated. Moreover, the network-based topological properties of cerebellum and cerebro-cerebellar topological mapping were investigated, respectively. Given the temporal natures in the neural population, a hidden Markov model (HMM) was further capitalized to uncover the dynamic pattern of cerebellar functional connectome. In order to test the robustness of our findings, we ran all of the analyses in an independent dataset (Sample 2; n = 440). Results We found that Crus I and II exhibited prominently high degree centrality (DC) for cerebellar functional connectome. Further, the cerebellar functional connectome and even the nested network-wise cerebellar connectome was found to be organized by small-world, modular and hierarchical manners significantly. Also, three intrinsic modules were found in cerebellar functional connectome, including attention/executive network, default mode network and task-positive network. In addition, the significant cerebro-cerebellar correlations for small-world organization and hierarchical architecture were found as well. By building cerebro-cerebellar topological mapping, both frontoparietal and subcortical networks were found to be overrepresented into cerebellums than cerebral cortex (3-fold). As for temporal natures, cerebellar functional connectome was observed to be highly flexible and modular, but showed high individual-specific variances in temporal dynamic pattern. Conclusion This study identified the topological architectures and temporal hierarchy of functional cerebellar connectome, and further demonstrated prominent functional cerebro-cerebellar couplings of small-world organization and hierarchical architectures.


Subject(s)
Connectome , Adult , Attention , Cerebellum/diagnostic imaging , Cerebral Cortex , Connectome/methods , Humans , Magnetic Resonance Imaging/methods
17.
J Cell Sci ; 134(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34415027

ABSTRACT

Flagellar assembly depends on intraflagellar transport (IFT), a bidirectional motility of protein carriers, the IFT trains. The trains are periodic assemblies of IFT-A and IFT-B subcomplexes and the motors kinesin-2 and IFT dynein. At the tip, anterograde trains are remodeled for retrograde IFT, a process that in Chlamydomonas involves kinesin-2 release and train fragmentation. However, the degree of train disassembly at the tip remains unknown. Here, we performed two-color imaging of fluorescent protein-tagged IFT components, which indicates that IFT-A and IFT-B proteins from a given anterograde train usually return in the same set of retrograde trains. Similarly, concurrent turnaround was typical for IFT-B proteins and the IFT dynein subunit D1bLIC-GFP but severance was observed as well. Our data support a simple model of IFT turnaround, in which IFT-A, IFT-B and IFT dynein typically remain associated at the tip and segments of the anterograde trains convert directly into retrograde trains. Continuous association of IFT-A, IFT-B and IFT dynein during tip remodeling could balance protein entry and exit, preventing the build-up of IFT material in flagella.


Subject(s)
Chlamydomonas , Dyneins , Biological Transport , Chlamydomonas/metabolism , Cilia/metabolism , Dyneins/genetics , Dyneins/metabolism , Flagella/metabolism , Protein Transport
18.
Transl Psychiatry ; 11(1): 384, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244469

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has exposed humans to the highest physical and mental risks. Thus, it is becoming a priority to probe the mental health problems experienced during the pandemic in different populations. We performed a meta-analysis to clarify the prevalence of postpandemic mental health problems. Seventy-one published papers (n = 146,139) from China, the United States, Japan, India, and Turkey were eligible to be included in the data pool. These papers reported results for Chinese, Japanese, Italian, American, Turkish, Indian, Spanish, Greek, and Singaporean populations. The results demonstrated a total prevalence of anxiety symptoms of 32.60% (95% confidence interval (CI): 29.10-36.30) during the COVID-19 pandemic. For depression, a prevalence of 27.60% (95% CI: 24.00-31.60) was found. Further, insomnia was found to have a prevalence of 30.30% (95% CI: 24.60-36.60). Of the total study population, 16.70% (95% CI: 8.90-29.20) experienced post-traumatic stress disorder (PTSD) symptoms during the COVID-19 pandemic. Subgroup analysis revealed the highest prevalence of anxiety (63.90%) and depression (55.40%) in confirmed and suspected patients compared with other cohorts. Notably, the prevalence of each symptom in other countries was higher than that in China. Finally, the prevalence of each mental problem differed depending on the measurement tools used. In conclusion, this study revealed the prevalence of mental problems during the COVID-19 pandemic by using a fairly large-scale sample and further clarified that the heterogeneous results for these mental health problems may be due to the nonstandardized use of psychometric tools.


Subject(s)
COVID-19 , Pandemics , Anxiety/epidemiology , China/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Humans , India , Japan , Mental Health , Prevalence , SARS-CoV-2
19.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074768

ABSTRACT

The impact of the Drosophila experimental system on studies of modern biology cannot be understated. The ability to tag endogenously expressed proteins is essential to maximize the use of this model organism. Here, we describe a method for labeling endogenous proteins with self-complementing split fluorescent proteins (split FPs) in a cell-type-specific manner in Drosophila A short fragment of an FP coding sequence is inserted into a specific genomic locus while the remainder of the FP is expressed using an available GAL4 driver line. In consequence, complementation fluorescence allows examination of protein localization in particular cells. Besides, when inserting tandem repeats of the short FP fragment at the same genomic locus, we can substantially enhance the fluorescence signal. The enhanced signal is of great value in live-cell imaging at the subcellular level. We can also accomplish a multicolor labeling system with orthogonal split FPs. However, other orthogonal split FPs do not function for in vivo imaging besides split GFP. Through protein engineering and in vivo functional studies, we report a red split FP that we can use for duplexed visualization of endogenous proteins in intricate Drosophila tissues. Using the two orthogonal split FP systems, we have simultaneously imaged proteins that reside in distinct subsynaptic compartments. Our approach allows us to study the proximity between and localization of multiple proteins endogenously expressed in essentially any cell type in Drosophila.


Subject(s)
Drosophila/metabolism , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence/methods , Staining and Labeling/methods , ADP-Ribosylation Factor 6 , Animals , Animals, Genetically Modified , Drosophila/genetics , Drosophila Proteins , Fluorescence , Green Fluorescent Proteins/genetics , Protein Engineering , Transcription Factors
20.
J Psychiatr Res ; 139: 62-70, 2021 07.
Article in English | MEDLINE | ID: mdl-34044265

ABSTRACT

Delay discounting reflects a devaluation of delayed long-term benefits but pursuing immediate rewards. Higher discounting rates (h-DR) are found ubiquitous in many diseases and unhealthy conditions, particularly in addiction disorder (AD), attention-deficit/hyperactivity disorder (ADHD), and obesity. Thus, h-DR was considered to be a common benchmark across many diseases facilitating to understand one disease to relevant others, which was called trans-disease process. However, the common and specific neural biomarkers associated with this process has not yet been studied well. We performed a voxel-wise task-related neuroimaging meta-analysis to clarify the neural pattern of trans-disease process across AD, ADHD and obesity. We recruited 19 eligible papers, including 9 AD papers (154 patients), 6 ADHD papers (106 patients) and 4 obesity studies (94 patients). Neuroimaging meta-analysis demonstrated the presence of neural biomarkers of trans-disease process: these patients showed inadequate brain response in caudate, ventromedial and dorsolateral prefrontal cortex (dlPFC) than do of healthy controls (HCs). Disease-specific neural patterns were also found, with prominent hypoactivation in parahippocampal-striatum network for AD, hyperactivation in dopamine-projection striatum network for ADHD and decreased activity in dorsal anterior cingulate cortex and dlPFC for obesity. This study provided robust evidence to reveal the neural substrates of trans-disease process, as well further promoted the triple brain network model in favor of the theoretical developments of these neuropsychiatric disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Delay Discounting , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain/diagnostic imaging , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...