Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 876: 162744, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36907390

ABSTRACT

Global reef degradation is a critical environmental health issue that has triggered intensive research on ocean warming, but the implications of emerging contaminants in coral habitats are largely overlooked. Laboratory experiments assessing organic ultraviolet (UV) filter exposure have shown that these chemicals negatively affect coral health; their ubiquitous occurrence in association with ocean warming may pose great challenges to coral health. We investigated both short- (10-day) and long-term (60-day) single and co-exposures of coral nubbins to environmentally relevant organic UV filter mixtures (200 ng/L of 12 compounds) and elevated water temperatures (30 °C) to investigate their effects and potential mechanisms of action. The initial 10-day exposure of Seriatopora caliendrum resulted in bleaching only under co-exposure conditions (compounds + temperature). The 60-day mesocosm study entailed the same exposure settings with nubbins of three species (S. caliendrum, Pocillopora acuta and Montipora aequituberculata). Bleaching (37.5 %) and mortality (12.5 %) of S. caliendrum were observed under UV filter mixture exposure. In the co-exposure treatment, 100 % S. caliendrum and P. acuta bleached associating with 100 % and 50 % mortality, respectively, and significant increase of catalase activities in P. acuta and M. aequituberculata nubbins were found. Biochemical and molecular analyses indicated significant alteration of oxidative stress and metabolic enzymes. The results suggest that upon the adverse effects of thermal stress, organic UV filter mixture at environmental concentrations can cause bleaching in corals by inducing a significant oxidative stress and detoxification burden, suggesting that emerging contaminants may play a unique role in global reef degradation.


Subject(s)
Anthozoa , Animals , Temperature , Seawater , Ecosystem , Oxidative Stress , Coral Reefs
2.
Dev Comp Immunol ; 109: 103717, 2020 08.
Article in English | MEDLINE | ID: mdl-32348787

ABSTRACT

Corals are comprised of a coral host and associated microbes whose interactions are mediated by the coral innate immune system. The diversity of immune factors identified in the Pocillopora damicornis genome suggests that immunity is linked to maintaining microbial symbioses while also being able to detect pathogens. However, it is unclear which immune factors respond to specific microbe-associated molecular patterns and how these immune reactions simultaneously affect coral-associated bacteria. To investigate this, fragments of P. damicornis and P. acuta colonies from Taiwan were subjected to lipopolysaccharide (LPS) treatment to stimulate immune responses and measure bacteria community shifts. RNA-seq revealed genotype-specific immune responses to LPS involving the upregulation of immune receptors, transcription factors, and pore-forming toxins. Bacteria 16S sequencing revealed significantly different bacteria communities between coral genotypes but no differences in bacteria communities were caused by LPS. Our findings confirm that Pocillopora corals activate conserved immune factors in response to LPS and identify transcription factors coordinating Pocillopora corals' immune responses. Additionally, the strong effect of coral genotype on gene expression and bacteria communities highlights the importance of coral genotype in the investigation of coral host-microbe interactions.


Subject(s)
Anthozoa/immunology , Coral Reefs , Immunity/drug effects , Lipopolysaccharides/pharmacology , Animals , Anthozoa/genetics , Anthozoa/microbiology , Bacteria/classification , Bacteria/genetics , Ecosystem , Gene Expression Regulation/drug effects , Gene Ontology , Genotype , Host Microbial Interactions/genetics , Immunity/genetics , RNA, Ribosomal, 16S/genetics
3.
Sci Total Environ ; 700: 134464, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31689648

ABSTRACT

Ocean acidification (OA) and warming currently threaten coastal ecosystems across the globe. However, it is possible that the former process could actually benefit marine plants, such as seagrasses. The purpose of this study was to examine whether the effects of the seagrass Thalassia hemprichii can increase the resilience of OA-challenged coral reef mesocosms whose temperatures were gradually elevated. It was found that seagrass shoot density, photosynthetic efficiency, and leaf growth rate actually increased with rising temperatures under OA. Macroalgal growth rates were higher in the seagrass-free mesocosms, but the calcification rate of the model reef coral Pocillopora damicornis was higher in coral reef mesocosms featuring seagrasses under OA at 25 and 28 °C. Both the macroalgal growth rate and the coral calcification rate decreased in all mesocosms when the temperature was raised to 31 °C under OA. However, the variation in gross primary production, ecosystem respiration, and net ecosystem production in the seagrass mesocosms was lower than in seagrass-free controls, suggesting that the presence of seagrass in the mesocosms helped to stabilize the metabolism of the system in response to simulated climate change.


Subject(s)
Anthozoa/physiology , Coral Reefs , Hydrocharitaceae/physiology , Animals , Climate Change , Hydrogen-Ion Concentration , Seawater/chemistry , Temperature
4.
Glob Chang Biol ; 24(10): 4566-4580, 2018 10.
Article in English | MEDLINE | ID: mdl-30030884

ABSTRACT

El Niño-Southern Oscillation (ENSO) events can cause dramatic changes in marine communities. However, we know little as to how ENSO events affect tropical seagrass beds over decadal timescales. Therefore, a diverse array of seagrass (Thalassia hemprichii) habitat types were surveyed once every 3 months for 16 years (January 2001 to February 2017) in a tropical intertidal zone that is regularly affected by both ENSO events and anthropogenic nutrient enrichment. La Niña and El Niño events had distinct effects on the biomass and growth of T. hemprichii. During La Niña years, higher (a) precipitation levels and (b) seawater nitrogen concentrations led to increases in seagrass leaf productivity, canopy height, and biomass. However, the latter simultaneously stimulated the growth of periphyton on seagrass leaves; this led to decreases in seagrass cover and shoot density. More frequent La Niña events could, then, eventually lead to either a decline in intertidal seagrass beds or a shift to another, less drought-resistant seagrass species in those regions already characterized by eutrophication due to local anthropogenic activity.


Subject(s)
El Nino-Southern Oscillation , Hydrocharitaceae/physiology , Biomass , Ecosystem , Eutrophication , Nitrogen/analysis , Plant Leaves , Seawater/chemistry
5.
PLoS One ; 10(4): e0125175, 2015.
Article in English | MEDLINE | ID: mdl-25897844

ABSTRACT

Fine sediments, which account for the majority of total fluvial sediment flux, have been suggested to degrade coral reefs on a global scale. Furthermore, sediment impacts can be exacerbated by extreme rainfall events associated with global climate change and anthropogenic nutrient enrichment. We report the findings from a series of mesocosm experiments exploring the effects of short-term sedimentation and nutrient enrichment on the interactions between the hard coral Acropora muricata, the sea anemone Mesactinia ganesis, and the green macroalga Codium edule. Mesocosms were manipulated to simulate either unimpacted reefs or reefs exposed to elevated levels of fine sediments for 10 or 14 days to simulate the effects of heavy rainfall. The first and second experiments were aimed to examine the effects of inorganic and organic sediments, respectively. The third experiment was designed to examine the interactive effects of nutrient enrichment and elevated sediment loads. Neither inorganic nor organic sediment loadings significantly affected the physiological performance of the coral, but, importantly, did reduce its ability to compete with other organisms. Photosynthetic efficiencies of both the green macroalga and the sea anemone increased in response to both sediment loadings when they were simultaneously exposed to nutrient enrichment. While organic sediment loading increased the nitrogen content of the green macroalga in the first experiment, inorganic sediment loading increased its phosphorus content in the second experiment. The coral mortality due to sea anemones attack was significantly greater upon exposure to enriched levels of organic sediments and nutrients. Our findings suggest that the combined effects of short-term sedimentation and nutrient enrichment could cause replacement of corals by sea anemones on certain coral reefs.


Subject(s)
Anthozoa/drug effects , Nitrogen/pharmacology , Particulate Matter/pharmacology , Phosphorus/pharmacology , Sea Anemones/drug effects , Animals , Anthozoa/physiology , Chlorophyta/drug effects , Chlorophyta/physiology , Coral Reefs , Ecosystem , Nitrogen/metabolism , Phosphorus/metabolism , Photosynthesis/drug effects , Photosynthesis/physiology , Sea Anemones/physiology , Seawater , Taiwan
6.
Environ Monit Assess ; 187(5): 265, 2015 May.
Article in English | MEDLINE | ID: mdl-25893767

ABSTRACT

Millions of tourists visit Kenting National Park (KNP) in southern Taiwan every year, causing great amount of sewage discharges in this area. This study aimed to assess the impact of sewage on KNP surface waters using zebrafish embryo-larval bioassays combined with chemical analyses of pharmaceuticals and personal care products (PPCPs). Surface water samples were collected monthly from May to October in 2010. During the monthly bioassays, zebrafish embryos were exposed to the water samples for 144 h. Hatchability, embryonic heart rate, larval survival rate, and deformities were recorded. Larval swimming behavior was also digitally quantified at the end of exposure. Significant decreases in hatchability and larval survival rate were observed at all sites. Both hatchability and larval survival rate were negatively correlated with nitrite and ammonia concentrations in the water. The field water had little effect on embryonic heart rate and morphology. However, lower swimming speeds and activity levels were observed in the larvae, suggesting neurobehavioral toxicity of the surface waters. The general detection frequency of the 28 target PPCPs was 75%. High levels of some PPCPs, particularly caffeine, N,N-diethyl-3-methylbenzamide (DEET), and nonylphenol, were measured in the water samples. Our results show that surface waters in KNP have been strongly impacted by human activities, resulting in lethal and behavioral toxicities in developing fish.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/toxicity , Animals , Fishes/physiology , Humans , Seawater/chemistry , Sewage/analysis , Taiwan , Water Pollutants, Chemical/analysis
7.
Mar Environ Res ; 86: 1-11, 2013 May.
Article in English | MEDLINE | ID: mdl-23453047

ABSTRACT

Given the threat of climate change towards scleractinian corals, there is an urgent need to understand their physiological mechanisms of acclimation to increasing temperatures. To gain insight into this process, two mesocosm-based experiments were conducted in Southern Taiwan with the model reef-building coral Pocillopora damicornis. In the first study, temperature was gradually elevated to 32 °C, though reduced to ambient levels at night, in order to simulate a temperature profile that can characterize intertidal reefs of Southern Taiwan. All corals acclimated to such conditions over the course of the month-long experiment, as evidenced by a variety of physiological and sub-cellular responses. In the second experiment, corals were exposed continually to 31.5 °C for two weeks, and, in contrast to results from the first study, the majority of the corals died, revealing that prolonged exposure to this temperature is lethal for this dominant reef builder of many regions of the Pacific Ocean.


Subject(s)
Acclimatization/physiology , Anthozoa/physiology , Coral Reefs , Temperature , Analysis of Variance , Animals , Fluorometry , Mortality , Real-Time Polymerase Chain Reaction , Seawater/analysis , Taiwan , Time Factors
8.
PLoS One ; 7(8): e44364, 2012.
Article in English | MEDLINE | ID: mdl-22952967

ABSTRACT

Recurrent disturbances can have a critical effect on the structure and function of coral reef communities. In this study, long-term changes were examined in the hard coral community at Wanlitung, in southern Taiwan, between 1985 and 2010. In this 26 year interval, the reef has experienced repeated disturbances that include six typhoons and two coral-bleaching events. The frequency of disturbance has meant that species susceptible to disturbance, such as those in the genus Acropora and Montipora have almost disappeared from the reef. Indeed, almost all hard coral species have declined in abundance, with the result that total hard coral cover in 2010 (17.7%) was less than half what it was in 1985 (47.5%). In addition, macro-algal cover has increased from 11.3% in 2003 to 28.5% in 2010. The frequency of disturbance combined with possible chronic influence of a growing human population mean that a diverse reef assemblage is unlikely to persist on this reef into the future.


Subject(s)
Anthozoa/physiology , Conservation of Natural Resources , Ecosystem , Animals , Population Dynamics , Principal Component Analysis , Taiwan , Time Factors
9.
Mar Pollut Bull ; 64(6): 1129-35, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22534409

ABSTRACT

In July 2001, the National Museum of Marine Biology and Aquarium, co-sponsored by the Kenting National Park Headquarters and Taiwan's National Science Council, launched a Long-Term Ecological Research (LTER) program to monitor anthropogenic impacts on the ecosystems of southern Taiwan, specifically the coral reefs of Kenting National Park (KNP), which are facing an increasing amount of anthropogenic pressure. We found that the seawater of the reef flats along Nanwan Bay, Taiwan's southernmost embayment, was polluted by sewage discharge at certain monitoring stations. Furthermore, the consequently higher nutrient and suspended sediment levels had led to algal blooms and sediment smothering of shallow water corals at some sampling sites. Finally, our results show that, in addition to this influx of anthropogenically-derived sewage, increasing tourist numbers are correlated with decreasing shallow water coral cover, highlighting the urgency of a more proactive management plan for KNP's coral reefs.


Subject(s)
Anthozoa/drug effects , Coral Reefs , Water Pollutants/analysis , Animals , Anthozoa/growth & development , Bays/chemistry , Conservation of Natural Resources , Environmental Monitoring , Humans , Seawater/chemistry , Seaweed/growth & development , Sewage/analysis , Taiwan , Water Pollution/statistics & numerical data
10.
Mar Environ Res ; 68(3): 106-17, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19464732

ABSTRACT

Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.


Subject(s)
Anthozoa/physiology , Fisheries , Food Chain , Models, Biological , Animals , Biomass , Fishes , Invertebrates , Oceans and Seas , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...