Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569554

ABSTRACT

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA Methylation
2.
Genomics Proteomics Bioinformatics ; 21(5): 1014-1029, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37451436

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the persistent coronavirus disease 2019 (COVID-19) pandemic, which has resulted in millions of deaths worldwide and brought an enormous public health and global economic burden. The recurring global wave of infections has been exacerbated by growing variants of SARS-CoV-2. In this study, the virological characteristics of the original SARS-CoV-2 strain and its variants of concern (VOCs; including Alpha, Beta, and Delta) in vitro, as well as differential transcriptomic landscapes in multiple organs (lung, right ventricle, blood, cerebral cortex, and cerebellum) from the infected rhesus macaques, were elucidated. The original strain of SARS-CoV-2 caused a stronger innate immune response in host cells, and its VOCs markedly increased the levels of subgenomic RNAs, such as N, Orf9b, Orf6, and Orf7ab, which are known as the innate immune antagonists and the inhibitors of antiviral factors. Intriguingly, the original SARS-CoV-2 strain and Alpha variant induced larger alteration of RNA abundance in tissues of rhesus monkeys than Beta and Delta variants did. Moreover, a hyperinflammatory state and active immune response were shown in the right ventricles of rhesus monkeys by the up-regulation of inflammation- and immune-related RNAs. Furthermore, peripheral blood may mediate signaling transmission among tissues to coordinate the molecular changes in the infected individuals. Collectively, these data provide insights into the pathogenesis of COVID-19 at the early stage of infection by the original SARS-CoV-2 strain and its VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , SARS-CoV-2/genetics , Macaca mulatta , COVID-19/genetics , Gene Expression Profiling
3.
Protein Cell ; 13(12): 920-939, 2022 12.
Article in English | MEDLINE | ID: mdl-35377064

ABSTRACT

SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/genetics , Macaca mulatta , SARS-CoV-2/genetics , Transcriptome
5.
Sci Transl Med ; 11(488)2019 04 17.
Article in English | MEDLINE | ID: mdl-30996080

ABSTRACT

Recent studies have established the involvement of the fat mass and obesity-associated gene (FTO) in metabolic disorders such as obesity and diabetes. However, the precise molecular mechanism by which FTO regulates metabolism remains unknown. Here, we used a structure-based virtual screening of U.S. Food and Drug Administration-approved drugs to identify entacapone as a potential FTO inhibitor. Using structural and biochemical studies, we showed that entacapone directly bound to FTO and inhibited FTO activity in vitro. Furthermore, entacapone administration reduced body weight and lowered fasting blood glucose concentrations in diet-induced obese mice. We identified the transcription factor forkhead box protein O1 (FOXO1) mRNA as a direct substrate of FTO, and demonstrated that entacapone elicited its effects on gluconeogenesis in the liver and thermogenesis in adipose tissues in mice by acting on an FTO-FOXO1 regulatory axis.


Subject(s)
Catechol O-Methyltransferase/metabolism , Catechols/pharmacology , Forkhead Box Protein O1/metabolism , Nitriles/pharmacology , RNA, Messenger/metabolism , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Body Weight/physiology , Catechol O-Methyltransferase/genetics , Enzyme Inhibitors/pharmacology , Forkhead Box Protein O1/genetics , Humans , Mice , RNA, Messenger/genetics , Thermogenesis/drug effects , Thermogenesis/genetics , Thermogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL