Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(13): 9344-9353, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38498940

ABSTRACT

Most photocatalytic and photovoltaic devices operate under broadband, constant illumination. Electron and hole dynamics in these devices, however, are usually measured by using ultrafast pulsed lasers in a narrow wavelength range. In this work, we use excited-state X-ray theory originally developed for transient X-ray experiments to study steady-state photomodulated X-ray spectra. We use this method to attempt to extract electron and hole distributions from spectra collected at a nontime-resolved synchrotron beamline. A set of plasmonic metal core-shell nanoparticles is designed as the control experiment because they can systematically isolate photothermal, hot electron, and thermalized electron-hole pairs in a TiO2 shell. Steady-state changes in the Ti L2,3 edge are measured with and without continuous-wave illumination of the nanoparticle's localized surface plasmon resonance. The results suggest that within error the quasi-equilibrium carrier distribution can be determined even from relatively noisy data with mixed excited-state phenomena. Just as importantly, the theoretical analysis of noisy data is used to provide guidelines for the beamline development of photomodulated steady-state spectroscopy.

2.
ACS Appl Mater Interfaces ; 16(7): 8783-8790, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38335216

ABSTRACT

In recent years, lithium oxygen batteries (Li-O2) have received considerable research attention due to their extremely high energy density. However, the poor conductivity and ion conductivity of the discharge product lithium peroxide (Li2O2) result in a high charging overpotential, poor cycling stability, and low charging rate. Therefore, studying and improving catalysts is a top priority. This study focuses on the commonly used heterogeneous catalyst ruthenium (Ru). The local distribution of this catalyst is controlled by using sputtering technology. Moreover, X-ray nanodiffraction is applied to observe the relationship between the decomposition of Li2O2 and the local distribution of Ru. Results show that Li2O2 decomposes homogeneously in liquid systems and heterogeneously in solid-state systems. This study finds that the catalytic effect of Ru is related to electrolyte decomposition and that its soluble byproducts act as electron acceptors or redox mediators, effectively reducing charging overpotential but also shortening the cycle life.

3.
Small ; 20(2): e2306020, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661358

ABSTRACT

To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.


Subject(s)
Inorganic Chemicals , Nanoparticles , Oxides , Titanium , Humans , Female , Animals , Caenorhabditis elegans , Zebrafish , Calcium Compounds/toxicity , Nanoparticles/toxicity
4.
Article in English | MEDLINE | ID: mdl-38016108

ABSTRACT

In recent years, the development of electric vehicles and environmental concerns have made necessary improvements in the energy density and safety of lithium-ion batteries. Therefore, the development of all-solid-state lithium-ion batteries (ASSLIBs) has become imperative. One advantage of ASSLIBs is their potential for downsizing with the use of lithium metal as the anode. However, in this study, a garnet-type solid electrolyte (Li6.75La3Zr1.75Ta0.25O12) was used, which has low reactivity with lithium metal. Thus, interface modification using CaCl2 was employed to form a Li-Ca-Cl composite anode. The interfacial resistance was remarkably reduced to 7 Ω cm2, and the symmetric cell exhibited stable cycling for 1200 h at room temperature and a current density of 0.1 mA cm-2. The voltage ranged from ±15 to ±16 mV. The full cell demonstrated a high initial discharge capacity of 149.2 mA h g-1 and a Coulombic efficiency of 98.0% while maintaining a discharge capacity retention of 91.3% after 100 cycles. These findings lay a solid foundation for future commercial applications as interface modification was achieved through a simple spin-coating process using low-cost CaCl2 (0.7 USD g-1).

5.
ACS Appl Mater Interfaces ; 15(37): 44413-44421, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37683282

ABSTRACT

Next-generation lithium-ion batteries must have high energy density and safety, making the development of all-solid-state batteries imperative. One of the biggest advantages of an all-solid-state lithium-ion battery (ASSLIB) is that its alloy uses lithium metal as an anode while ignoring its flammability and other dangers. Herein, high-conductivity garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) was chosen as the solid electrolyte part of an all-solid-state battery. A composite anode was formed by melting Li and MXene-MAX together, reducing the interface impedance from 566 to 55 Ω cm2. The Li-MXene|LLZTO|LFP full battery displayed a high initial discharge capacity of 163.0 mAh g-1 and a Coulombic efficiency of 97.0% and maintained 90.2% of its discharge capacity over 100 cycles, but it did not maintain a good overpotential. Therefore, the synergistic effect of Li-MXene-Pt will highly improve the performance of the full battery because of its high initial discharge capacity of 150.0 mAh g-1 and Coulombic efficiency of 95.5%, discharge capacity maintained at 93.3% over 100 cycles, and low overpotential of 0.04 V.

6.
Nanoscale ; 15(38): 15558-15572, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37721121

ABSTRACT

Single-atom nanozymes (SANs) are the latest trend in biomaterials research and promote the application of single atoms in biological fields and the realization of protein catalysis in vivo with inorganic nanoparticles. Carbon quantum dots (CDs) have excellent biocompatibility and fluorescence properties as a substrate carrying a single atom. It is difficult to break through pure-phase single-atom materials with quantum dots as carriers. In addition, there is currently no related research in the single-atom field in the context of oral cancer, especially head and neck squamous cell carcinoma. This research developed a lipid surface-coated nanozyme combined with CDs, single-atomic gold, and modified lipid ligands (DSPE-PEG) with transferrin (Tf) to treat oral squamous cell carcinoma. The study results have demonstrated that surface-modified single-atom carbon quantum dots (m-SACDs) exhibit excellent therapeutic effects and enable in situ image tracking for diagnosing and treating head and neck squamous carcinoma (HNSCC).


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Photochemotherapy , Humans , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/drug therapy , Carbon/chemistry , Oxidative Stress , Lipids/chemistry
7.
ACS Appl Mater Interfaces ; 15(33): 39505-39512, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37551922

ABSTRACT

Upgraded technology has realized miniaturization and promoted transformation in each field. Miniaturized light-emitting diode (LED) chips enable higher resolution and create a full sense of immersion in displays. Porous GaN is a structure that can reduce excitation light leakage and enhance the light conversion efficiency. Perovskite quantum dots with the highest optical density as candidate materials for loading in pores can significantly decrease the aggregation phenomenon and increase the path of light absorption. Here, the porous tunability is explored by electrochemical etching under a range of voltages, concentrations, and etching times with acid and base electrolytes, such as oxalic acid and potassium hydroxide. Based on scanning electron microscopy images, the distribution of the pores and the morphology of pore channels can be distinguished under acid and base etching. Larger pore sizes and distorted channels (∼680 nm) are presented on the oxalic acid-etched GaN chip. In contrast, smaller pore sizes and straight-deeper channels (∼5650 nm) are demonstrated on the GaN by potassium hydroxide etching. Therefore, the hybrid nanostructure is etched by oxalic acid and potassium hydroxide, separately. The green and red light conversion efficiencies of perovskite quantum dots pumped by a blue LED can be improved by 3 and 10 times, respectively, resulting in a color gamut of approximately 124%.

8.
ACS Appl Mater Interfaces ; 15(34): 40648-40655, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37584718

ABSTRACT

The high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) cathode material with high energy density, low cost, and excellent rate capability has grabbed the attention of the field. However, a high-voltage platform at 4.7 V causes severe oxidative side reactions when in contact with the organic electrolyte, leading to poor electrochemical performance. Furthermore, the contact between the liquid electrolyte and LNMO leads to Mn dissolution during cycles. In this work, we applied the sol-gel method to prepare Li3InCl6-coated LNMO (LIC@LNMO) to address the mentioned problems of LNMO. By introducing a protective layer of halide-type solid-state electrolyte on LNMO, we can prevent direct contact between LNMO and electrolyte while maintaining good ionic conductivity. Thus, we could demonstrate that 5 wt % LIC@LNMO exhibited a good cycle performance with a Coulombic efficiency of 99% and a capacity retention of 80% after the 230th cycle at the 230th cycle at 1C at room temperature.

9.
ChemSusChem ; 16(19): e202300504, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37505227

ABSTRACT

Garnet-type solid-state electrolytes are among the most reassuring candidates for the development of solid-state lithium metal batteries (SSLMB) because of their wide electrochemical stability window and chemical feasibility with lithium. However, issues such as poor physical contact with Li metal tend to limit their practical applications. These problems were addressed using ß-SiC as an additive to the Li anode, resulting in improved wettability over Li6.75 La3 Zr1.75 Ta0.25 O12 (LLZTO) and establishing an improved interfacial contact. At the Li-SiC|LLZTO interface, intimacy was induced by a lithiophilic Li4 SiO4 phase, whereas robustness was attained through the hard SiC phase. The optimized Li-SiC|LLZTO|Li-SiC symmetric cell displayed a low interfacial impedance of 10â€…Ω cm2 and superior cycling stability at varying current densities up to 5800 h. Moreover, the modified interface could achieve a high critical current density of 4.6 mA cm-2 at room temperature and cycling stability of 1000 h at 3.5 mA cm-2 . The use of mechanically superior materials such as SiC as additives for the preparation of a composite anode may serve as a new strategy for robust garnet-based SSLMB.

10.
Chem Rev ; 123(15): 9497-9564, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37436918

ABSTRACT

This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.

11.
ACS Appl Mater Interfaces ; 15(27): 32589-32596, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37364173

ABSTRACT

The rapid change in population, environment, and climate is accompanied by the food crisis. As a new type of farming, indoor agriculture opens the possibility of addressing this crisis in the future. In this study, a phosphor-converted light-emitting diode (pc-LED), as energy-saving lighting for indoor agriculture, was used to evaluate the response and effect on the growth of Lactuca sativa. Red phosphors, SrLiAl3N4:Eu2+ (SLA) and CaAlSiN3:Eu2+ (CASN), were characterized and analyzed with crystal structure, morphology, and optical properties. Eu2+-doped phosphors provided the red emission of around 650 nm which is highly matched with the absorption of chlorophyll. Under the same luminescence intensity, broader emission of CASN pc-LED demonstrated a 100% increase of photosynthetically active photon flux density and 130% promotion of plant weight than the SLA pc-LED, which reflected the positive result of the carbon fixation. The chlorophyll and nitrate responses have also revealed the effect of broader red light on indoor agriculture.

12.
Article in English | MEDLINE | ID: mdl-36780369

ABSTRACT

With magnesium being a cost-effective anode metal compared to the other conventional Li-based anodes in the energy market, it could be a capable source of energy storage. However, Mg-O2 batteries have struggled its way to overcome the poor cycling stability and sluggish reaction kinetics. Therefore, Ru metallic nanoparticles on carbon nanotubes (CNTs) were introduced as a cathode for Mg-O2 batteries, which are known for their inherent electronic properties, large surface area, and increased crystallinity to favor remarkable oxygen reduction reactions and oxygen evolution reactions (ORR and OER). Also, we deployed a first-of-its-kind, conducive mixed electrolyte (CME) (2 M Mg(NO3)2:1 M Mg(TFSI)2/diglyme). Hence, this synergistic incorporation of CME-based Ru/CNT Mg-O2 batteries could unleash long cycle life with low overpotential, excellent reversibility, and high ionic conductivity and also reduces the intrinsic corrosion behavior of Mg anodes. Correspondingly, this novel amalgamation of CME with Ru/CNT cathode has displayed superior cyclic stability of 65 cycles and a maximum discharge potential of 25 793 mAh g-1 with a small overvoltage plateau of 1.4 V, noticeably subjugating the findings of conventional single electrolyte (CSE) (1 M Mg(TFSI)2/diglyme). This CME-based Ru/CNT Mg-O2 battery design could have a significant outcome as a future battery technology.

13.
Article in English | MEDLINE | ID: mdl-36757360

ABSTRACT

All-solid-state lithium-ion batteries (ASSLIBs) have attracted much attention owing to their high energy density and safety and are known as the most promising next-generation LIBs. The biggest advantage of ASSLIBs is that it can use lithium metal as the anode without any safety concerns. This study used a high-conductivity garnet-type solid electrolyte (Li6.75La3Zr1.75Ta0.25O12, LLZTO) and Li-Ga-N composite anode synthesized by mixing melted Li with GaN. The interfacial resistance was reduced from 589 to 21 Ω cm2, the symmetry cell was stably cycled for 1000 h at a current density of 0.1 mA cm-2 at room temperature, and the voltage range only changed from ±30 to ±40 mV. The full cell of Li-Ga-N|LLZTO|LFP exhibited a high first-cycle discharge capacity of 152.2 mAh g-1 and Coulombic efficiency of 96.5% and still maintained a discharge capacity retention of 91.2% after 100 cycles. This study also demonstrated that Li-Ga-N had been shown as two layers. Li3N shows more inclined to be closer to the LLZTO side. This method can help researchers understand what interface improvements can occur to enhance the performance of all-solid-state batteries in the future.

14.
ChemSusChem ; 16(7): e202202151, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36634026

ABSTRACT

All-solid-state batteries with solid ionic conductors packed between solid electrode films can release the dead space between them, enabling a greater number of cells to stack, generating higher voltage to the pack. This Review is focused on using high-voltage cathode materials, in which the redox peak of the components is extended beyond 4.7 V. Li-Ni-Mn-O systems are currently under investigation for use as the cathode in high-voltage cells. Solid electrolytes compatible with the cathode, including halide- and sulfide-based electrolytes, are also reviewed. Discussion extends to the compatibility between electrodes and electrolytes at such extended potentials. Moreover, control over the thickness of the anode is essential to reduce solid-electrolyte interphase formation and growth of dendrites. The Review discusses routes toward optimization of the cell components to minimize electrode-electrolyte impedance and facilitate ion transportation during the battery cycle.

15.
Nanoscale ; 14(47): 17735-17742, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36421013

ABSTRACT

Erbium (Er) complexes are used as optical gain materials for signal generation in the telecom C-band at 1540 nm, but they need a sensitizer to enhance absorption. Na+ substitution for Ag+ and Bi3+ doping at the In3+ site is a possible strategy to enhance the broadband emission of Cs2AgInCl6, which could be used as a sensitizer for energy transfer to rare-earth elements. Herein, self-trapped exciton (STE) energy transfer to Er3+ at 1540 nm in double perovskite is reported. An acid precipitation method was used to synthesize Cs2AgInCl6 and its derivatives with Er3+, Bi3+, and Na+. Bare Cs2AgInCl6:Er emission signals were found to be weak at 1540 nm, but Bi3+ doping increased them by 12 times, and Bi3+ and Na+ doping increased signal intensity by up to 25 times. Electron paramagnetic resonance spectroscopy characterized a decrease in axial symmetry over the Er3+ ions after the substitutions of Na+ and Bi3+ in Cs2AgInCl6 at low temperatures (<7 K) for the first time. Moreover, an increase in pressure compressed the structure, which tuned the STE transition for free exciton emission, and a further increase in pressure distorted the cubic phase above 70 kbar.

16.
Dalton Trans ; 51(37): 14297-14305, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36069304

ABSTRACT

This study presents the impact of temperature and pressure on AlN:Mn2+ luminescence kinetics. Unusual behavior of Mn2+ optical properties during UV excitation is observed, where a strong afterglow luminescence of Mn2+ occurs even at low temperatures. When the temperature increases, the contribution of the afterglow luminescence is further enhanced, causing a significant increase in the luminescence intensity. The observed phenomena may be explained by an energy diagram in which the ON-VAl complex in AlN:Mn2+ plays a key role. Hence the ON-VAl complex defect in AlN:Mn2+ plays a double role. When the ON-VAl defect is located close to Mn2+ ions, it is responsible for transferring excitation energy directly to Mn2+ ions. However, when the ON-VAl defect complex is located far from Mn2+ ions, its excited state level acts as an electron trap responsible for afterglow luminescence. Additionally, three models have been tested to explain the structure of the emission spectrum and the strong asymmetry between the excitation and emission spectra. From the most straightforward configuration coordinate diagram through the configuration coordinate diagram model assuming different elastic constants in the excited and ground-states ending by a model based on the Jahn-Teller effect. We proved that only the Jahn-Teller effect in the excited 4T1 electronic state with spin-orbit coupling could fully explain the observed phenomena. Finally, high-pressure spectroscopic results complemented by the calculations of Racah parameters and the Tanabe-Sugano diagram are presented.

17.
ACS Appl Mater Interfaces ; 14(35): 39896-39906, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36018035

ABSTRACT

Solar-driven water electrolysis to produce hydrogen is one of the clean energy options for the current energy-related challenges. Si as a photocathode exhibits a large overpotential due to the slow hydrogen evolution reaction (HER) kinetics and hence needs to be modified with a cocatalyst layer. MoS2 is a poor HER cocatalyst due to its inert basal plane. Activation of the MoS2 basal plane will facilitate HER kinetics. In this study, we have incorporated SnS2 into MoS2 ultrathin sheets to induce defect formation and phase transformation. MoS2/SnS2 composite ultrathin sheets with a Sn2+ state create a large number of S vacancies on the basal sites. The optimized defect-rich MoS2/SnS2 ultrathin sheets decorated on surface-modified Si micro pyramids as photocathodes show a current density of -23.8 mA/cm2 at 0 V with an onset potential of 0.23 V under acidic conditions, which is higher than that of the pristine MoS2. The incorporation of SnS2 into 2H-MoS2 ultrathin sheets not only induces a phase but also can alter the local atomic arrangement, which in turn is verified by their magnetic response. The diamagnetic SnS2 phase causes a decrease in symmetry and an increase in magnetic anisotropy of the Mo3+ ions.

18.
ACS Appl Mater Interfaces ; 14(26): 30029-30038, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35737890

ABSTRACT

All-inorganic CsPbBr3 perovskite quantum dots (QDs) are considered to be one of the most promising green candidates for the new-generation backlight displays. The pending barriers to their applications, however, lie in their mismatching of the target window of green light, scalable production, susceptibility to the leaching of lead ions, and instability in harsh environments (such as moisture, light, and heat). Herein, high-quality CsPbBr3 QDs with globoid shapes and cuboid shapes were in situ crystallized/grown inside a well-designed glass to produce nanocomposites with peak emission at 526 nm, which not only exhibited photoluminescence quantum yields of 53 and 86% upon 455 and 365 nm excitation, respectively, but also have been imparted of high stability when they were submerged in water and exposed to heat and light. These characteristics, along with their lead self-sequestration capability and easy-to-scale preparation, can enable breakthrough applications for CsPbBr3 QDs in the field of wide color gamut backlit display. A high-performance backlight white LEDs was fabricated using the CsPbBr3 QDs@glass powder and K2SiF6:Mn4+ red phosphor, which shows a color gamut of ∼126% of the NTSC or 94% of the Rec. 2020 standards.

19.
Chem Rev ; 122(13): 11474-11513, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35603576

ABSTRACT

Light-emitting diodes (LEDs) are attracting considerable attention around the world. Phosphor materials, as crucial color-converted components, play central roles in LED development. The demands for phosphor materials have become increasingly stringent over the past decades, from high brightness to narrowband emission or function-dependent spectrum engineering. Although substantial progress has been made for currently developed phosphor materials, simultaneously satisfying all requirements for high-level applications remains challenging. In this review, we aim to provide a comprehensive understanding of the development of phosphor materials in different generations and to elucidate the key designed mechanisms concerning the activators and the host structures to fulfill the aforementioned aspects. We highlight the developments in phosphor materials through the classification of demands for high luminescence, high thermal stability, narrowband emission for high color gamut, and broadband emission for near-infrared. We also focus on elucidating the key designed mechanisms of phosphor materials in different generations. Furthermore, future perspectives about micro-LED applications and nanoluminescent materials are provided. This study opens up an avenue for designing the luminescent materials of the future.


Subject(s)
Luminescence , Color
20.
Angew Chem Int Ed Engl ; 61(28): e202204411, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35481661

ABSTRACT

The minimization of thermal quenching, which leads to luminescence loss at high temperatures, is one of the most important issues for near-infrared phosphors. In the present work, we investigated the properties of near-infrared Ca(Sc,Mg)(Al, Si)O6 : Cr3+ phosphors with a pyroxene-type structure under blue light excitation. The CaScAlSiO6 : Cr3+ end member of Ca(Sc,Mg)(Al,Si)O6 : Cr3+ phosphor led to broadband emission at a full-width half maximum of 215 nm, whereas the CaMgSi2 O6 : Cr3+ end member exhibited high thermal stability at 150 °C, with an intensity of 88.4 % of that at room temperature. The structural analysis and density functional theory calculations revealed the absence of soft conformations and local space confinement contributed to the high structural rigidity and weakened the thermal quenching effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...