Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(13): 3072-3078, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35353521

ABSTRACT

Coherent phonons generated through regulation of lattice oscillation via ultrafast laser pulses or X-rays have been desired in various fields, including optoelectronics, thermal and quantum information, and communications. Phonon coherence of two-dimensional (2D) materials is particularly attractive as it enables controllable information transmission but is challenging as the weak interplanar coupling makes phonon excitation extremely difficult. Herein we managed to generate size-dependent phonon coherence from bulk Bi to few-layer bismuthene by an ultrafast femtosecond laser pulse and made a systematic comparison thorough a combination of computation, transient absorption, and reflectance spectroscopic methods. The results witnessed the A1g phonon excitation in all of the three Bi materials with distinct thicknesses, and the quantum size effect of 2D materials caused phonon confinement and eventual bond softening manifested as a red-shifted vibration frequency and shortened decoherence time compared with those of their bulk counterpart. This study offers new perspectives for tailoring coherent phonons in 2D materials for quantum science and technology including quantum communication, computing, and design of novel quantum devices, etc.

2.
Nanoscale Horiz ; 5(10): 1420-1429, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32856666

ABSTRACT

Sb nanosheets, also known as antimonene, have received ever-growing consideration as a promising new type of two-dimensional (2D) material due to their many attractive properties. However, how their nonlinear optical (NLO) properties are affected by their nanosheet structure and measurement conditions remains unclear. Herein, we report a successful size-selective production method for Sb nanosheets, which is based on a combination of lithium ion intercalation, solvent exfoliation and size selection centrifugation. This high-yield and size-selective preparation method enables fundamental investigation on the relation of the intrinsic optical properties of Sb nanosheets. Nanosecond Z-scan measurements revealed a unique size-dependent broadband NLO response. When the average size is reduced from 3 micrometers to 50 nanometers, the Sb nanosheets exhibit a clear transition from saturable absorption to reversed saturable absorption. Ultrafast transient absorption spectroscopic investigation indicated that exciton cooling is significantly faster in a small nanosheet than in large ones, revealing that the different exciton relaxation dynamic plays key roles in the distinct size-tunable nonlinear optical response. This work paves new ways towards the mass production and practical application of antimonene.

3.
J Phys Chem Lett ; 11(15): 6007-6015, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32628484

ABSTRACT

Two-dimensional (2D) CsPb2Br5 exhibits intriguing functions in enhancing the performance of optoelectronic devices in terms of environmental stability and luminescence properties when composited with other perovskites in different dimensionalities. We built a type I three-dimensional (3D) CsPbBr3/2D CsPb2Br5 heterojunction through phase transition where CsPbBr3 quantum dots in situ grew into 2D CsPb2Br5. A thorough growth mechanism study in combination with excited state dynamic investigations via femtosecond spectroscopy and first-principles calculations revealed that the type I hierarchy enhanced the stability of the heterojunction and spurred its luminous quantum yield by prolonging the lifetime of photogenerated carriers. Mixing the heterojunction with other phosphors yielded white-light-emitting diodes with a color rendering index of 94%. The work thus not only offered one new avenue for building heterojunctions by using the "soft crystal" nature of perovskites but also disentangled the enhanced luminescence mechanism of the heterojunction that can be harnessed for promising applications in the luminescence and display fields.

4.
J Phys Chem Lett ; 10(21): 6572-6577, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31594309

ABSTRACT

New all-inorganic perovskites like Cs4PbBr6 provide rich luminescent tools and particularly novel physical insights, including their zero-dimensional structure and controversial emitting mechanism. The ensuing debate over the origin of the luminescence of Cs4PbBr6 inspired us to tackle the issue through fabricating high-quality Cs4PbBr6 single crystals and employing ultrafast dynamics study. Upon photoexcitation, Cs4PbBr6 underwent dynamics steps distinct from that of CsPbBr3, including exciton migration to the defect level on a time scale of several hundred femtoseconds, exciton relaxation within the defect states on the picosecond time scale, and exciton recombination from the subnanosecond to nanosecond time scale. The observation disclosed that crystal defects of Cs4PbBr6 induced green emission while CsPbBr3 mainly relied on quantum confinement to emit at room temperature. The study provides an in-depth understanding of the photoinduced multistep dynamics steps of Cs4PbBr6 associated with display and photovoltaic applications, establishing Cs4PbBr6 as a new candidate for uses associated with the perovskite family of materials.

5.
Chem Commun (Camb) ; 55(74): 11056-11058, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31453575

ABSTRACT

Natural hollow fibers were used as templates to in situ produce thin Cs4PbX6 nanosheets on the inner walls, forming luminescent fibers that integrated the advantages of the large length of fibers and the emission tunability of perovskites, and exhibited great robustness as well for multiple applications like warning signs, anti-counterfeiting and fashion.

6.
Nanoscale ; 10(45): 21106-21115, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30325397

ABSTRACT

The rediscovery of black phosphorus (BP) has expanded the 2D family into Group 15 (Nitrogen Group) elements, among which bismuthene is the latest member with extraordinary opto-electronic, catalytic and biocompatible properties and potential as a 2D topological insulator. However, bulk Bi is not easily mechanically exfoliated as its counterpart of BP. Thus, to date, the reports on 2D Bi fabrication are rare, and investigations on its nonlinear optical properties are even less. Herein, we rationally designed a new strategy combining acid-interaction and liquid exfoliation to successfully transform metal bulk Bi into few-layer semiconductor, which resulted in unseen opto-electronic properties, such as tunable nonlinear responses all the way to the near-infrared (NIR) region. This band is critical for telecommunication and military purposes, but currently, functioning materials are extremely scarce. The origin of this strong saturable absorption was thoroughly explored through time-resolved spectroscopy spanning from the fs to µs timescale, which indicated ultrafast fs to ps carrier dynamics in the early stage and long exciton bleaching recovery up to µs. As a proof-of-concept application, the as-prepared 2D Bi was employed as a saturable absorber to mode-lock a Tm-doped fiber laser and successfully realized a 2 µm NIR-wavelength output. This study not only offers an effective and scalable method to fabricate the new 2D family member bismuthene with extraordinary stability, but also explores its strong and broad nonlinear responses extending into the NIR region and fundamental photoinduced dynamics, which demonstrate the full potential of 2D Bi for application in opto-electronic devices and nonlinear optics.

SELECTION OF CITATIONS
SEARCH DETAIL