Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Neurosurgery ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747605

ABSTRACT

BACKGROUND AND OBJECTIVES: Vein of Galen malformation (VOGM), the result of arteriovenous shunting between choroidal and/or subependymal arteries and the embryologic prosencephalic vein, is among the most severe cerebrovascular disorders of childhood. We hypothesized that in situ analysis of the VOGM lesion using endoluminal tissue sampling (ETS) is feasible and may advance our understanding of VOGM genetics, pathogenesis, and maintenance. METHODS: We collected germline DNA (cheek swab) from patients and their families for genetic analysis. In situ VOGM "endothelial" cells (ECs), defined as CD31+ and CD45-, were obtained from coils through ETS during routine endovascular treatment. Autologous peripheral femoral ECs were also collected from the access sheath. Single-cell RNA sequencing of both VOGM and peripheral ECs was performed to demonstrate feasibility to define the transcriptional architecture. Comparison was also made with a published normative cerebrovascular transcriptome atlas. A subset of VOGM ECs was reserved for future DNA sequencing to assess for somatic and second-hit mutations. RESULTS: Our cohort contains 6 patients who underwent 10 ETS procedures from arterial and/or venous access during routine VOGM treatment (aged 12 days to ∼6 years). No periprocedural complications attributable to ETS occurred. Six unique coil types were used. ETS captured 98 ± 88 (mean ± SD; range 17-256) experimental ECs (CD31+ and CD45-). There was no discernible correlation between cell yield and coil type or route of access. Single-cell RNA sequencing demonstrated hierarchical clustering and unique cell populations within the VOGM EC compartment compared with peripheral EC controls when annotated using a publicly available cerebrovascular cell atlas. CONCLUSION: ETS may supplement investigations aimed at development of a molecular-genetic taxonomic classification scheme for VOGM. Moreover, results may eventually inform the selection of personalized pharmacologic or genetic therapies for VOGM and cerebrovascular disorders more broadly.

2.
Nat Commun ; 15(1): 3140, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605083

ABSTRACT

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.


Subject(s)
Gene Editing , Kidney , Animals , Swine , Humans , Animals, Genetically Modified , Heterografts , Transplantation, Heterologous , Graft Rejection/genetics
3.
Clin Breast Cancer ; 24(4): e310-e318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492995

ABSTRACT

INTRODUCTION: PD-L1 immunohistochemistry (IHC) is being used as a predictive marker of the benefit derived from immunotherapy in several cancer types, including breast cancer. However, the insight gleaned of the prognostic and predictive value of PD-L1 status and its correlation with molecular characteristics during breast cancer progression remains limited. METHODS: We performed an PD-L1 (22C3) assay in pre-treatment primary and metastatic tumor sections from 33 patients with breast carcinoma, matched for post neoadjuvant chemotherapy (p-NACT). PD-L1 expression was evaluated using 3 scoring methods: immune cell (IC) and tumor cell (TC) with a 1% as the cutoff value, and combined positive scores (CPS) with a 1 as the cutoff value. Twenty-two samples from 11 patients had successful fluorescence in situ hybridization (FISH)-based molecular data available for analysis. RESULTS: In the 33 pre-treatment primary tumors, PD-L1 IC, TC, and CPS showed positive correlation with stromal tumor infiltrate lymphocytes (sTIL), histological grade 3, and triple negative breast carcinoma (TNBC). In the matched metastatic tumors, only PD-L1 IC showed a positive correlation with sTIL. The primary tumors showed a higher PD-L1 expression than the matched metastatic tumors by IC and CPS. Negative to positive conversion by CPS was identified in the metastatic tumors from lung, pleura and liver. p-NACT tumors also showed a trend of lower PD-L1 expression compared to the pre-treatment tumors. Six patients had matched samples for molecular and PD-L1 comparison, and none of them showed consistent gene alterations or PD-L1 expression among the primary, p-NACT and metastatic tumors. CONCLUSION: Our study showed a decrease in PD-L1 expression and disconnected molecular features during breast cancer progression. Repeating PD-L1 IHC testing could be considered in some specific metastatic sites if primary tumors were negative. Further studies are needed to identify other predictive factors for immune checkpoint inhibitor (ICI) therapy in patients with breast carcinoma.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Breast Neoplasms , Humans , Female , B7-H1 Antigen/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Middle Aged , Biomarkers, Tumor/metabolism , Adult , Prognosis , Aged , Immunohistochemistry , Neoadjuvant Therapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy
4.
Proc Natl Acad Sci U S A ; 120(49): e2315096120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011564

ABSTRACT

Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by S100A7/8/9 and KRT6 family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49fhigh cells. The disruption of the S100A enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.


Subject(s)
Hidradenitis Suppurativa , Humans , Hidradenitis Suppurativa/genetics , Skin/metabolism , Epigenomics , Epigenesis, Genetic , Stem Cells/metabolism , Chromatin/metabolism
5.
Clin Immunol ; 257: 109842, 2023 12.
Article in English | MEDLINE | ID: mdl-37981105

ABSTRACT

Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-ß was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.


Subject(s)
B-Lymphocytes , Lupus Erythematosus, Systemic , Animals , Female , Humans , Male , Mice , Autoantibodies , Crosses, Genetic , Germinal Center , Lupus Erythematosus, Systemic/genetics , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer , Sex Characteristics
6.
Front Immunol ; 14: 1082078, 2023.
Article in English | MEDLINE | ID: mdl-37256130

ABSTRACT

Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.


Subject(s)
Macrophages , Monocytes , Mice , Animals , Macrophages/metabolism , Monocytes/metabolism , Kidney/metabolism , Receptors, Chemokine/metabolism , Disease Models, Animal , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism
7.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36928191

ABSTRACT

Emerging data indicate an association between environmental heavy metal exposure and lung disease, including lower respiratory tract infections (LRTIs). Here, we show by single-cell RNA sequencing an increase in Pparg gene expression in lung macrophages from mice exposed to cadmium and/or infected with Streptococcus pneumoniae. However, the heavy metal cadmium or infection mediated an inhibitory posttranslational modification of peroxisome proliferator-activated receptor γ (PPARγ) to exacerbate LRTIs. Cadmium and infection increased ERK activation to regulate PPARγ degradation in monocyte-derived macrophages. Mice harboring a conditional deletion of Pparg in monocyte-derived macrophages had more severe S. pneumoniae infection after cadmium exposure, showed greater lung injury, and had increased mortality. Inhibition of ERK activation with BVD-523 protected mice from lung injury after cadmium exposure or infection. Moreover, individuals residing in areas of high air cadmium levels had increased cadmium concentration in their bronchoalveolar lavage (BAL) fluid, increased barrier dysfunction, and showed PPARγ inhibition that was mediated, at least in part, by ERK activation in isolated BAL cells. These observations suggest that impaired activation of PPARγ in monocyte-derived macrophages exacerbates lung injury and the severity of LRTIs.


Subject(s)
Lung Injury , PPAR gamma , Mice , Animals , PPAR gamma/metabolism , Lung/metabolism , Cadmium/toxicity , Cadmium/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Macrophages, Alveolar/metabolism
8.
Res Sq ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36711785

ABSTRACT

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. We transplanted a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and studied the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells were uncommon in the porcine kidney cortex early after xenotransplantation and consisted of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages expressed genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft was detected. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression is sufficient to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.

9.
Clin Immunol ; 244: 109130, 2022 11.
Article in English | MEDLINE | ID: mdl-36189576

ABSTRACT

Here, we report a case of atopic dermatitis (AD) in a patient who received biweekly doses of dupilumab, an antibody against the IL-4 receptor α chain (IL-4Rα). Single cell RNA-sequencing showed that naïve B cells expressed the highest levels of IL4R compared to other B cell subpopulations. Compared to controls, the dupilumab-treated patient exhibited diminished percentages of IL4R+IGHD+ naïve B cells and down-regulation of IL4R, FCER2 (CD23), and IGHD. Dupilumab treatment resulted in upregulation of genes associated with apoptosis and inhibition of B cell receptor signaling and down-regulation of class-switch and memory B cell development genes. The dupilumab-treated patient exhibited a rapid decline in COVID-19 anti-spike and anti-receptor binding domain antibodies between 4 and 8 and 11 months post COVID-19 vaccination. Our data suggest that intact and persistent IL-4 signaling is necessary for maintaining robust survival and development of naïve B cells, and maintaining a long term vaccine response.


Subject(s)
COVID-19 Drug Treatment , Receptors, Interleukin-4 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , COVID-19 Vaccines , Humans , Interleukin-4 , RNA , Receptors, Antigen, B-Cell
10.
J Immunol ; 209(8): 1513-1522, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36165181

ABSTRACT

Activated naive (aNAV) B cells have been shown to be the precursor of the CD11c+T-bet+ IgD-CD27- double-negative (DN)2 or atypical memory (aMEM) B cells in systemic lupus erythematosus (SLE). To determine factors that maintain resting naive (rNAV) B cells, the transcriptomic program in naive (IGHD+IGHM +) B cells in human healthy control subjects (HC) and subjects with SLE was analyzed by single-cell RNA-sequencing analysis. In HC, naive B cells expressed IL-4 pathway genes, whereas in SLE, naive B cells expressed type I IFN-stimulated genes (ISGs). In HC, aNAV B cells exhibited upregulation of the gene signature of germinal center and classical memory (cMEM) B cells. In contrast, in SLE, aNAV B cells expressed signature genes of aMEM. In vitro exposure of SLE B cells to IL-4 promoted B cell development into CD27+CD38+ plasmablasts/plasma and IgD-CD27+ cMEM B cells. The same treatment blocked the development of CD11c+Tbet+ aNAV and DN2 B cells and preserved DN B cells as CD11c-Tbet- DN1 B cells. Lower expression of IL-4R and increased intracellular IFN-ß in naive B cells was correlated with the accumulation of CD21-IgD- B cells and the development of anti-Smith and anti-DNA autoantibodies in patients with SLE (n = 47). Our results show that IL-4R and type I IFN signaling in naive B cells induce the development of distinct lineages of cMEM versus aMEM B cells, respectively. Furthermore, diminished IL-4R signaling shifted activated B cell development from the DN1 to the DN2 trajectory in patients with SLE. Therapies that enhance IL-4R signaling may be beneficial for ISGhi SLE patients.


Subject(s)
B-Lymphocyte Subsets , Lupus Erythematosus, Systemic , Autoantibodies/metabolism , Humans , Immunoglobulin D/metabolism , Interleukin-4/metabolism , RNA/metabolism
11.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: mdl-36066976

ABSTRACT

The kidney contains a population of resident macrophages from birth that expands as it grows and forms a contiguous network throughout the tissue. Kidney-resident macrophages (KRMs) are important in homeostasis and the response to acute kidney injury. While the kidney contains many microenvironments, it is unknown whether KRMs are a heterogeneous population differentiated by function and location. We combined single-cell RNA-Seq (scRNA-Seq), spatial transcriptomics, flow cytometry, and immunofluorescence imaging to localize, characterize, and validate KRM populations during quiescence and following 19 minutes of bilateral ischemic kidney injury. scRNA-Seq and spatial transcriptomics revealed 7 distinct KRM subpopulations, which are organized into zones corresponding to regions of the nephron. Each subpopulation was identifiable by a unique transcriptomic signature, suggesting distinct functions. Specific protein markers were identified for 2 clusters, allowing analysis by flow cytometry or immunofluorescence imaging. Following injury, the original localization of each subpopulation was lost, either from changing locations or transcriptomic signatures. The original spatial distribution of KRMs was not fully restored for at least 28 days after injury. The change in KRM localization confirmed a long-hypothesized dysregulation of the local immune system following acute injury and may explain the increased risk for chronic kidney disease.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Macrophages/metabolism , Kidney/metabolism , Acute Kidney Injury/metabolism , Flow Cytometry , Renal Insufficiency, Chronic/metabolism
12.
J Cell Sci ; 135(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35946425

ABSTRACT

Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. Here, we specifically inactivated Dicer1 in the endocardium during cardiogenesis and found that Dicer1 deletion caused congenital mitral valve stenosis and regurgitation, whereas it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. We thus reveal miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.


Subject(s)
MicroRNAs , Tricuspid Valve , Extracellular Matrix/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitral Valve , Tricuspid Valve/abnormalities
13.
Kidney360 ; 3(1): 28-36, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35368565

ABSTRACT

Background: AKI is a common sequela of infection with SARS-CoV-2 and contributes to the severity and mortality from COVID-19. Here, we tested the hypothesis that kidney alterations induced by COVID-19-associated AKI could be detected in cells collected from urine. Methods: We performed single-cell RNA sequencing (scRNAseq) on cells recovered from the urine of eight hospitalized patients with COVID-19 with (n=5) or without AKI (n=3) as well as four patients with non-COVID-19 AKI (n=4) to assess differences in cellular composition and gene expression during AKI. Results: Analysis of 30,076 cells revealed a diverse array of cell types, most of which were kidney, urothelial, and immune cells. Pathway analysis of tubular cells from patients with AKI showed enrichment of transcripts associated with damage-related pathways compared with those without AKI. ACE2 and TMPRSS2 expression was highest in urothelial cells among cell types recovered. Notably, in one patient, we detected SARS-CoV-2 viral RNA in urothelial cells. These same cells were enriched for transcripts associated with antiviral and anti-inflammatory pathways. Conclusions: We successfully performed scRNAseq on urinary sediment from hospitalized patients with COVID-19 to noninvasively study cellular alterations associated with AKI and established a dataset that includes both injured and uninjured kidney cells. Additionally, we provide preliminary evidence of direct infection of urinary bladder cells by SARS-CoV-2. The urinary sediment contains a wealth of information and is a useful resource for studying the pathophysiology and cellular alterations that occur in kidney diseases.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/etiology , COVID-19/complications , Humans , Kidney , SARS-CoV-2 , Sequence Analysis, RNA
14.
J Am Soc Nephrol ; 33(4): 747-768, 2022 04.
Article in English | MEDLINE | ID: mdl-35110364

ABSTRACT

BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.


Subject(s)
Cysts , Polycystic Kidney Diseases , Animals , Cilia/metabolism , Cysts/genetics , Kidney/metabolism , Mice , Mutation , Polycystic Kidney Diseases/metabolism
15.
J Cell Sci ; 135(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35099001

ABSTRACT

Mitochondrial dysfunction causes severe congenital cardiac abnormalities and prenatal/neonatal lethality. The lack of sufficient knowledge regarding how mitochondrial abnormalities affect cardiogenesis poses a major barrier for the development of clinical applications that target mitochondrial deficiency-induced inborn cardiomyopathies. Mitochondrial morphology, which is regulated by fission and fusion, plays a key role in determining mitochondrial activity. Dnm1l encodes a dynamin-related GTPase, Drp1, which is required for mitochondrial fission. To investigate the role of Drp1 in cardiogenesis during the embryonic metabolic shift period, we specifically inactivated Dnm1l in second heart field-derived structures. Mutant cardiomyocytes in the right ventricle (RV) displayed severe defects in mitochondrial morphology, ultrastructure and activity. These defects caused increased cell death, decreased cell survival, disorganized cardiomyocytes and embryonic lethality. By characterizing this model, we reveal an AMPK-SIRT7-GABPB axis that relays the reduced cellular energy level to decrease transcription of ribosomal protein genes in cardiomyocytes. We therefore provide the first genetic evidence in mouse that Drp1 is essential for RV development. Our research provides further mechanistic insight into how mitochondrial dysfunction causes pathological molecular and cellular alterations during cardiogenesis.


Subject(s)
Dynamins , Ribosomal Proteins , Animals , Dynamins/genetics , Dynamins/metabolism , Heart/embryology , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
16.
Elife ; 102021 09 21.
Article in English | MEDLINE | ID: mdl-34545812

ABSTRACT

Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model, we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem/progenitor cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks' level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Dynamins/metabolism , Mitochondrial Dynamics , Stem Cells/metabolism , Animals , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cyclin E/genetics , Cyclin E/metabolism , Dynamins/genetics , HaCaT Cells , Humans , Keratin-15/genetics , Keratin-15/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Phosphorylation , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
17.
Sci Rep ; 11(1): 15612, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341398

ABSTRACT

Age-related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes. Comparison of macula and peripheral retinal regions found no cell-type differences but did identify 50 differentially expressed genes (DEGs) with about 1/3 expressed in cones. Integration of our single-cell data with bulk RNA sequencing data from normal and AMD donors showed compositional changes more pronounced in macula in rods, microglia, endothelium, Müller glia, and astrocytes in the transition from normal to advanced AMD. KEGG pathway analysis of our normal vs. advanced AMD eyes identified enrichment in complement and coagulation pathways, antigen presentation, tissue remodeling, and signaling pathways including PI3K-Akt, NOD-like, Toll-like, and Rap1. These results showcase the use of single-cell RNA sequencing to infer cell-type compositional and cell-type-specific gene expression changes in intact bulk tissue and provide a foundation for investigating molecular mechanisms of retinal disease that lead to new therapeutic targets.


Subject(s)
Macular Degeneration , Phosphatidylinositol 3-Kinases , RNA-Seq , Retina , Gene Expression Profiling , Humans , Sequence Analysis, RNA
18.
J Immunol ; 205(2): 346-358, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32554431

ABSTRACT

IL-23 promotes autoimmune disease, including Th17 CD4 T cell development and autoantibody production. In this study, we show that a deficiency of the p19 component of IL-23 in the autoimmune BXD2 (BXD2-p19-/- ) mouse leads to a shift of the follicular T helper cell program from follicular T helper (Tfh)-IL-17 to Tfh-IFN-γ. Although the germinal center (GC) size and the number of GC B cells remained the same, BXD2-p19-/- mice exhibited a lower class-switch recombination (CSR) in the GC B cells, leading to lower serum levels of IgG2b. Single-cell transcriptomics analysis of GC B cells revealed that whereas Ifngr1, Il21r, and Il4r genes exhibited a synchronized expression pattern with Cxcr5 and plasma cell program genes, Il17ra exhibited a synchronized expression pattern with Cxcr4 and GC program genes. Downregulation of Ighg2b in BXD2-p19-/- GC B cells was associated with decreased expression of CSR-related novel base excision repair genes that were otherwise predominantly expressed by Il17ra + GC B cells in BXD2 mice. Together, these results suggest that although IL-23 is dispensable for GC formation, it is essential to promote a population of Tfh-IL-17 cells. IL-23 acts indirectly on Il17ra + GC B cells to facilitate CSR-related base excision repair genes during the dark zone phase of GC B cell development.


Subject(s)
Autoimmune Diseases/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Immunoglobulin G/metabolism , Interleukin-23/metabolism , T-Lymphocyte Subsets/immunology , Th17 Cells/immunology , Animals , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p19/genetics , Immunoglobulin Class Switching , Immunoglobulin G/genetics , Interferon-gamma/metabolism , Interleukin-23/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
J Immunol ; 204(7): 1982-1987, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32122998

ABSTRACT

GFP is frequently used as a marker for tracking donor cells adoptively transplanted into recipient animals. The human ubiquitin C promoter (UBC)-driven-GFP transgenic mouse is a commonly used source of donor cells for this purpose. This mouse was initially generated in the C57BL/6 inbred strain and has been backcrossed into the BALB/cBy strain for over 11 generations. Both the C57BL/6 inbred and BALB/cBy congenic UBC-GFP lines are commercially available and have been widely distributed. These UBC-GFP lines can be a convenient resource for tracking donor cells in both syngenic MHC-matched and in allogenic MHC-mismatched studies as C57BL/6 (H-2b) and BALB/cBy (H-2d) have disparate MHC haplotypes. In this report, we surprisingly discover that the UBC-GFP BALB/cBy congenic mice still retain the H-2b MHC haplotype of their original C57BL/6 founder, suggesting that the UBC-GFP transgene integration site is closely linked to the MHC locus on chromosome 17. Using linear amplification-mediated PCR, we successfully map the UBC-GFP transgene to the MHC locus. This study highlights the importance and urgency of mapping the transgene integration site of transgenic mouse strains used in biomedical research. Furthermore, this study raises the possibility of alternative interpretations of previous studies using congenic UBC-GFP mice and focuses attention on the necessity for rigor and reproducibility in scientific research.


Subject(s)
Chromosomes/genetics , Green Fluorescent Proteins/genetics , Major Histocompatibility Complex/genetics , Mutagenesis, Insertional/genetics , Transgenes/genetics , Ubiquitin C/genetics , Animals , Haplotypes/genetics , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...